已知函数fx=aInx x^2. 若a=-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:12:56
已知函数fx=aInx x^2. 若a=-2
已知函数fx 满足fx+fy=f(x+y)+2 当x>0时,fx>2 求fx在R上是增函数

证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)

已知函数fx=Inx/x 减x,求函数fx的单调区间?

用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-

已知函数fx=ex(x2+ax+1)求函数fx的极值

fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=alnx-ax-3(a属于R)求函数fx的单调区间

f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00

已知函数fx=根号下x+1,求证fx在定义域上是增函数

函数f(x)=√(x+1)的定义域是x>-1.设任意x1、x2∈(-1,+∞),且x1

已知函数fx的定义域是(0,+∞)当x>1时,fx>0,且f(xy)=fx+fy.1.求f(1) 2.证明:fx在定义域

因为f(xy)=f(x)+f(y)所以f(1)=f(1)+f(1)所以f(1)=f(1)-f(1)=0证明:因为f(x)满足对数函数的性质所以f(x)=logx设0<x1<x2因为f(x1

已知函数fx =(x-a)lnx

fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a

已知函数fx=|x+2|-x+3 1.写出函数fx的单调区间 2.求函数y=f(x^2-3)的值

已知函数fx=|x+2|-x+3,1.写出函数fx的单调区间;2.求函数y=f(x^2-3)的值;3.求不等式f(1-x^2)>f(2x)的解集 (1)解析:将函数f(x)=|x+2|-x+

已知函数fx=sinx(cosx-根号3sinx) 1.求函数fx的最小正周期 2.将函数y=sin2x的图象向左平移a

(1)f(x)=sinx(cosx-√3sinx)=sinxcosx-√3sin²x=1/2sin2x-√3/2(1-cos2x)=1/2sin2x+√3/2cos2x-√3/2=sin(2

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=x+a^2/x-3,gx=x+lnx,其中a>0,Fx=fx+gx

1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解

已知函数y=fx是偶函数

解由函数y=fx是偶函数,在x属于(0,正无穷)上递减,则函数y=f(x)在x属于(负无穷大,0)是增函数,即当x1,x2属于(负无穷大,0)且x1<x2时,f(x1)<f(x2),且f(x1),f(

已知函数fx=2sin(wx+

第一题A.第二题B

已知函数fx=sin(2x+π/3)(1)求函数y=fx的

解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数

已知函数fx=x-a㏑x,求函数fx的极值

f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间

已知函数fx=lnx/x-x 1.求函数fx单调区间 2.设m>0求fx在[m.2m]上的最大值

1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个

已知函数fx= -1,x

解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1