已知函数fx=ax2 x-1 3a在区间[-1,1]上有零点,求实数a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:02:59
f(x)=a(cos²x+sinxcosx)+b=a(cos²x-1/2+sinxcosx+1/2)+b=a(cos2x/2+sin2x/2)+b=a根号下2sin(2x+π/4)
设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0
F(x)=X^2+2x+a>0对x≥0时恒成立,a>-X^2-2x=-(x+1)²+1而二次函数-(x+1)²+1在[0,+∞)上是减函数,当x=0是取到最大值0,所以a>0.
1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0
令t=sinx则f=(1-t^2)+2t=-t^2+2t+1=-(t-1)^2+2因为|t|
f(x)=x^3+a^2+1+xf'(x)=3x^2+1>0所以f(x)在R上单调递增
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
函数的定义域(0,+oo),f'(x)=1/x-a;当a
定义域为(0,+∞)f'(x)=1+2/x²-a/x=(x²-ax+2)/x²f'(x)与g(x)=x²-ax+2符号一样对g(x)△=a²-8(a>
f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为
1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0
f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间