已知函数fx=ax² bx c(a大于0,b属于r,c属于r)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:04:59
已知函数fx=ax² bx c(a大于0,b属于r,c属于r)
已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

已知函数fx=ax*2+2ax+4(a.>0)若x1

f(x)=ax^2+2ax+4=a(x+1)^2-a+4∵x10∴f(x1)-f(x2)=[a(-x2+1)^2-a+4]-[a(x2+1)^2-a+4]=a(-x2+1+x2+1)(-x2+1-x2

已知函数fx=loga(x^2-ax+5)(a>0且a 不等于1)

1.22.a大于0小于1或a大于1小于2根号5对不对?再问:求详细过程--再答:1x^2-2x+5最小的4所以f(x)的最小值为22.分两种情况a大于0小于1和a大于1要使若对任意x属于(0,正无穷)

已知函数fx=1/3x^3-ax+b,其中实数a,b是常数

fx=1/3x^3-ax+b当a=1时,fx=1/3x^3-x+bf'x=x^2-1令f‘x>0得到x>1或x

已知函数fx=1/3x^3+(a-2)x^2/2-2ax-3

f(x)=1/3x³+(a-2)/2x²-2ax-3第一问:a=1f(x)=1/3x³+(1-2)/2x²-2x-3=1/3x³-1/2x²

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=alnx-ax-3(a属于R)求函数fx的单调区间

f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

已知函数fx=(ax+1)(x+1)e^x,a属于R,若函数

解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,

已知函数fx=2ax立方-3x平方,a>0

f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.

已知函数fx=xlnx+ax^2,a€r

1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0

已知函数fx=(2ax-1)/(2x+1),当a=1时,求fx的单调区间

将a=1带入函数中,变形为fx=(2x-1)/(2x+1)其中x不等于-1/2,否则无实意f’x=[(2x-1)'(2x+1)-(2x+1)'(2x-1)]/(2x+1)^2f’x=[2(2x+1)-

已知函数fx=ax平方+bx+c(a≠0)是(-∞,0)

f(x)=x^2+1再问:可以解释一下为什么吗再答:这个函数的对称轴是x=0,而且开口方向向上,所以在(负无穷大,0)是单调递减,在x=0处取得最小值,最小值是1,满足大于0,所以这个函数满足条件

已知函数f(x)=ax+lnx,a属于R,求fx单调区间

1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0

已知函数fx=x+ax-lnx,当a=1时,求fx的单调区间

fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

a+b=b+a a+b+c=a+(bxc) axbxc=ax(bxc) (a+b)xc=axc+bxc 运用了什么运算律

运用了加法交换定律乘法交换律乘法分配律

已知a属于R,求函数fx=x^2e^ax的单调区间

F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0

已知a属于R,求函数fx=x^2e^ax的单调递增区间

求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0