已知函数fx=ax² bx c(a大于0,b属于r,c属于r)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:04:59
答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:
f(x)=ax^2+2ax+4=a(x+1)^2-a+4∵x10∴f(x1)-f(x2)=[a(-x2+1)^2-a+4]-[a(x2+1)^2-a+4]=a(-x2+1+x2+1)(-x2+1-x2
不懂可以追加.
1.22.a大于0小于1或a大于1小于2根号5对不对?再问:求详细过程--再答:1x^2-2x+5最小的4所以f(x)的最小值为22.分两种情况a大于0小于1和a大于1要使若对任意x属于(0,正无穷)
fx=1/3x^3-ax+b当a=1时,fx=1/3x^3-x+bf'x=x^2-1令f‘x>0得到x>1或x
f(x)=1/3x³+(a-2)/2x²-2ax-3第一问:a=1f(x)=1/3x³+(1-2)/2x²-2x-3=1/3x³-1/2x²
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0
解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,
f(x)=2ax³-3x²求导f'(x)=6ax²-6x=6x(ax-1)a>0f'(x)>0得x1/a所以fx在区间(-无穷,0)是增函数.
1)f'(x)=lnx+1+2axf'(1)=1+2af(1)=a在此在点(1,f(1))处的切线为y=(1+2a)(x-1)+a代入原点(0,0),得0=-(1+2a)+a,解得;a=-12)在(0
将a=1带入函数中,变形为fx=(2x-1)/(2x+1)其中x不等于-1/2,否则无实意f’x=[(2x-1)'(2x+1)-(2x+1)'(2x-1)]/(2x+1)^2f’x=[2(2x+1)-
f(x)=x^2+1再问:可以解释一下为什么吗再答:这个函数的对称轴是x=0,而且开口方向向上,所以在(负无穷大,0)是单调递减,在x=0处取得最小值,最小值是1,满足大于0,所以这个函数满足条件
1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0
fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
运用了加法交换定律乘法交换律乘法分配律
F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0
求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0