已知函数fx=x²-a绝对值x-1,其中a∈R
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:36:45
当x∈(-∞,a)时f(x)=exp(a-x),随x增大(a-x)减小,f(x)单减;当x∈[a,+∞)时f(x)=exp(x-a),随x增大(x-a)增大,f(x)单增;∵f(x)在[1,+∞)上单
设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可
F(x)=X^2+2x+a>0对x≥0时恒成立,a>-X^2-2x=-(x+1)²+1而二次函数-(x+1)²+1在[0,+∞)上是减函数,当x=0是取到最大值0,所以a>0.
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
f(x)=1/a-1/xf'(x)=1/(x^2)可见,当x≠0时,恒有:f(x)>0所以,当x∈(,∞)时,f(x)是单调增函数(其实,在x∈(-∞,0)时,f(x)
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
偶函数再答:如采纳请评价谢谢再问:你确定是对的吧再问:我评价咯再答:嗯很简单的问题再问:恩
解题思路:三角函数。解题过程:解:因为是方程f(x)=0的解.所以0=sin+a,所以a=-2,∴=sinx-cosx-1=sin(x-)-1,x∈[0,π],所以,sin(x-),sin(x-)-1
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
1、a=0偶函数,因为a=0时,f(x)=x的平方.f(-x)=f(x),所以为偶函数a不等于零,f(-x)不等于f(x),也不等于f(x),所以为非奇非偶函数.
函数的定义域(0,+oo),f'(x)=1/x-a;当a
f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为
1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0
f'(x)=1-a/x=(x-a)/xf(x)的定义域是x>0谈论a的取值范围a0此时f'(x)恒>0f(x)单调递增,没有极值当a>0时令f'(x)>=0x>=a∴f(x)增区间是[a,+∞)减区间
解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1
正负根号2再答:再答:看懂没