已知函数fx等于2的x次方减一,加上二分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:11:32
已知函数fx等于2的x次方减一,加上二分之一
高中函数 已知函数f(x)=x平方/ex次方. (1)求函数fx的单调区间. (2)若方程fx=m

f'(x)=[2xe^x-x²e^x]/(e^x)²=(2x-x²)/(e^x)∴(-∞,0)单调递减,(0,2)单调递增;(2,+∞)单调递减∴极小值是f(0)=0极大

已知函数F(x)=2x-1/2x-1注意x是2次方判断Fx的奇偶性 求证FX在定义域上的曾函数

式子加一再减一F(x)=(2x-1)-1/(2x-1)+1然后设t=2x+1的f(x)=t-1/t+1然后就用初等函数来解吧.自己看法,

已知函数fx=2的x次方+k*2的-x次方,k∈R

2^x+k*2^-x>2^-xk>(2^-x-2^x)/2^-xk>1-2^2x当x=0,k最大值0,当x>0,k0再问:谢谢。可以告诉我fx的图像是什么样的吗?再答:大概这个样,我用画板画了下再问:

已知函数fx等于a减二的x次方加一分之一若fx是奇函数则a等于

加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决

已知函数fx等于2的x次方减去2的负x次方,数列an满足

麻烦图重发,清楚点再问:谢谢不用了知道怎么做了再答:再答:采纳啊

函数fx=2x一x的2次方和fx=x的2次方十6x的值域为

再答:亲,如果我的回答你还满意请点采纳,你的肯定是我答题的动力。来自百度知道教育4

已知函数fx是定义在R上的奇函数,当x>0时,fx= 1-2的-x次方,则不等式fx

解题思路:分析:先求f(x)的解析式,而题中已给出x>0时的表达式,故先由函数的奇偶性可得x<0和x=0时函数f(x)的解析式,之后再分别解两个不等式.解题过程:

已知函数fx=ax²-e的x次方

因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得

已知函数y=fx是偶函数,且fx等于f(x-2),当x属于(0,1)时,fx等于2的x次方-1,则f(log2为地的10

高几的题啊再问:��1��再答:再答:����再问:���ˣ�лл再答:û�£�����������ĩ����Ҳ�ڸ�ϰ

已知函数fx=4的x次方-2的(x+1)次方+2

f(x)=4^x-2^(x+1)+2=(2^x)^2-2*2^x+2设t=2^x>0∴f(t)=t^2-2t+2对称轴是t=2/2=1(1)f(x)=10t^2-2t+2=10t^2-2t-8=0(t

已知y等于fx是r上的奇函数,且当x是小于零时,fx等于x的平方加四x减一.(1) 求y等于fx的解析式 (2)画出y等

x>=0,f(x)=x(x-2)=x²-2x+1-1=(x-1)²-1,对称轴x=1,顶点(1,-1),开口向上.过(0,0)和(2,0).fx是定义在R上的偶函数:f(x)在x负

已知函数fx=(2的x次方加一)分之2的x次方减一①判断函数的奇偶性②求证:fx在R上为增函数③求证:方程fx-㏑x=0

再答:方程是这样吗?再问:不是哦再答:好,你等下。再问:再答:先来两问。再答:再答:再答:第三问我之前想复杂了…orz让你久等sorry啊再问:没事,谢啦,你真是一好学生。。。

已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方 (1)试写出函数fx的关系式 (2)讨论函数fx的单调性

已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方(1)试写出函数fx的关系式(2)讨论函数fx的单调性(1)解析:∵函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方∴f(-x)

设函数fx等于x加x分之一减一 (x 大于等于2)则f (x)的值域

f(x)=x+1/x-1(x>=2)>=2-1=1x=1时去最小值但是x>=2所以f(x)单调递增f(x)min=f(2)=1.5值域:[1.5,+∞)再问:为什么x大于等于2时函数是增函数再答:画图

设fx等于lg(4-k*2的x次方),求函数fx的定义域

只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k

已知函数fx=2x次方,x≤1

由题意有ƒ(3)=log3(3)=1,ƒ(0)=2^0=1∴ƒ(3)+ƒ(0)=2故选C再问:明白了,谢谢

已知函数fx等于x^2 ax

f'(x)=2x+a>0x>-a/2-a/2=-2a=4