已知函数fx等于ax-ex

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:24:41
已知函数fx等于ax-ex
已知函数fx等于ax加1除以x加2在区间负二到正无穷上为增函数

求a的取值范围?原式为f(x)=ax+1/(x+2)=[a(x+2)+1-2a]/(x+2)=(1-2a)/(x+2)+a是个比较明显的反函数,x≠-2只有1-2a1/2

已知函数fx=ex的平方(x+ax-a,其中a是常数) 1.当a=1时,求曲线y

再答:思路大概就是这样,寻找函数满足要求的情况,不断尝试,如果算错请万分包涵再问:没事没事,太感谢你啦

已知函数fx等于ax平方加2x减a,若对任意a属于[-1,1].fx大于0恒成立,求x取值范围

因为是对于a属于[-1,1]恒成立,所以应看作是关于a的函数,而在本式中可以看作是关于a的一次函数,要使得大于0恒成立,只要让a=-1,a=1都成立即可.所以x^2+2x-1>0;-x^2+2x+1>

已知函数fx=2|x-2|+ax有最小值

分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2

已知函数fx=ex(x2+ax+1)求函数fx的极值

fx'=ex(2x+a)+ex(x2+ax+1)=ex(x2+(2+a)x+a+1)=ex(x+a+1)(x+1)令fx'=0得x1=-a-1,x2=-1ex>01)a=0fx是增函数无极值2)a>o

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=alnx-ax-3(a属于R)求函数fx的单调区间

f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

已知函数fx=(1-x)/ax+inx :

1f(x)=(1-x)/ax+lnx=1/(ax)-1/a+lnx,a是正实数,定义域x>0f'(x)=1/x-1/(ax^2),当x=1/a时,f'(x)=0,当00所以当x∈[1/a,inf]时,

已知函数fx=ax^7+bx+cx^3+dx+6,若f2=8,则f(-2)等于

∵函数f(x)=ax^7+bx^5+cx^3+dx+6,若f(2)=8∴当x=2时,ax^7+bx^5+cx^3+dx=2,∴当x=-2时,ax^7+bx^5+cx^3+dx=-2∴f(-2)=-2+

已知函数fx=ax减x平方减lnx ,a属于R 当a等于零时 判断fx的单调性 急

当a=0的时候f(x)=-x^2-lnxf'(x)=-2x-1/x令f'(x)=0得到=-2x-1/x=0,无解显然在(-∞,0)f'(x)>0在(0,+∞)f'(x)

已知函数fx=(x-m)2ex/m(1)求fx的单调区间(2)若对于任意的x∈(0,∞)都有fx小于等于1/49e3求m

解题思路:先求出函数的导数,通过讨论m的范围从而得到函数的单调区间。解题过程:

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx等于ax平方-4分之3ax+b fx等于2 f1等于1 - 百度

fx等于2这个是错的吧,应该是某个X值等2,直接把这个值了X=1时f1等于1代进去,然后解二元一次方程,很简单.

已知函数fx等于ax加1除以x加2

f(x)=(ax+1)/(x+2)下文呢.

已知函数fx等于x^2 ax

f'(x)=2x+a>0x>-a/2-a/2=-2a=4