已知函数fx=Asin(x+)的最大值是1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:16:08
fx=2asin²x-2√3asinxcosx+a+b=a(2-cos2x-√3sin2x)+b=a[2-2sin(2x+π/6)]+b2π/3
f(5π/12)=Asin(5π/12+π/4)=Asin(2π/3)=A*√3/2,(√为根号)=3/2A=√3f(θ)+f(-θ)=3/2√3sin(θ+π/4)+√3sin(-θ+π/4)=3/
貌似没这解吧,当x>2时,f(x)=3x-3.当½≦x≦2时,f(x)=x+1.当x
2asin²x-2√3asinxcosx+a+b=2asin²x-√3a(2sinxcosx)+a+b=a(1-cos2x)-√3asin2x+a+b=-acos2x-√3asin
已知函数fx=asin(wx+f)的图像与x轴的交点,相邻两个交点之间的距离为π/2,且图像上,一个最高点为(π|6,2)当x属于(π|24,π|3),fx取值范围解析:∵函数fx=asin(wx+f
fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a
12π/2w=π→w=1.若a>0,则f(x)最大值是a+a/2+b=7/4即(3/2)a+b=7/4.f(x)最小值是-a+a/2+b=3/4即(-1/2)a+b=3/4.解方程组得:a=1/2;b
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
A=2T=4*[π/6-(-π/6)]=4π/3w=2π/(4π/3)=1.5f(x)=2sin(1.5x+φ)2sin(1.5*π/6+φ)=2π/6+φ=π/2φ=π/3f(x)=2sin(1.5
已知函数fx=Asin(wx+α)+1(w>0.A>00
解析:因为f(x)=Asin(wx+φ)(A>0,w>0,0w=2所以,f(x)=2sin(2x+φ)==>f(π/12)=2sin(π/6+φ)=2==>φ=π/3所以,f(x)=2sin(2x+π
(1)fx=Asin(wx+π/4)(其中x∈R,A>0,w>0)的最大值为2,最小正周期为8.那么A=2,2π/w=8∴w=π/4∴f(x)=2sin(π/4x+π/4)(2)两点P、Q的横坐标依次
我已经算出函数y=f(x)+f(x+2)的简式y=2根号2cosπ/4x求当x∈[-6,-2/3]函数y的最大值与最小值以及相应的x值解析:∵y=2√2cos(π/4x)∴函数y周期为T=8,所以,当
1、∵函数fx=Asin(2x+5π/6)(A>0.x∈R)的最小值为-2∴A=2即f(x)=2sin(2x+5π/6)则f(0)=2sin(5π/6)=12、f(x)=2sin(2x+5π/6)=2
已知函数fx=Asin(wx+)+B的一系列对应值如下表X-π/6π/35π/64π/311π/67π/317π/6Y-1131-113(1)根据表格提供的数据求函数y=f(x)的解析式(2)若对任意
解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1
f'(x)=2x+a>0x>-a/2-a/2=-2a=4
f'(x)=1/x-ax>1,所以00即证umin(a)=u(1/e)=x/lnx-lnx+x/e-2>0恒成立.令t(x)=x/lnx-lnx+x/e-2(x>1)令t'(x)=(lnx-1)/ln