已知双曲线2x²-y²=2,经过定点(0,2)的直线l与双曲线交于A,B两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:18:32
∵双曲线的渐近线方程为2x±3y=0,∴设双曲线的标准方程为(2x+3y)(2x-3y)=λ(λ≠0),即4x2-9y2=λ,①当λ>0时,化成标准方程为x2λ4-y2λ9=1,∵双曲线的焦距是23,
焦点坐标是(0,-4√3),(0,4√3)那么设双曲线方程为y²/a²-x²/b²=1所以a²+b²=c²=48①又双曲线实轴长与
首先由题知;2B=3A(当然你要设一个双曲线的基本方程x平方/a平方-y平方/b平方=1)再令a=3t则b=2t代入设的标准方程后得x平方/9t平方-y平方/4t平方=1再代入题目中给的那个点就得到方
双曲线的渐近线方程为:y=±(b/a)x所以若双曲线跟直线y=2x有交点,则(b/a)>2,所以(b/a)²>2²,b²>4a²所以c²=a²
已知渐近方程移项得2x=3y平方得4x方=9y方所以可设双曲线方程为x方比9入-y方比4入=1再根据已知点P可求入=负三分之一所以双曲线方程为3y方比4-x方比3=1
渐近线的方程为y=2x,即b/a=2b=2ax^2-y^2/b^2=1a^2=1,b^2=4a^2=4故方程是x^2-y^2/4=1
先求出x²/16-y²/9=1的焦点坐标(-5,0),(5,0),横坐标右移8.得出本题焦点坐标(-13,0),(-3,0).
两个方程联立,得到关于X的一元二次方程,有伟达定理,两根之和等于-b/a,得到x1+x2=-2/k=3,k=-2/3,再代入就行了
把y=k(x-1)代入双曲线x^2-y^2=4中得到关于x的一元二次方程,求出判别式△的表达式,(1)当△>0时,直线l与双曲线有两个公共点,(-2根号3)/3
(1)因为两双曲线的渐近线相同,因此可设所求双曲线C的方程为x^2/3-y^2/2=k,将x=3√10,y=5√2代入可得k=90/3-50/2=5,所以,所求双曲线C的标准方程为x^2/15-y^2
C1:c^2=a^2+b^2=5F1(-跟5,0),F2(跟5,0)渐近线y=+-b/a=+-1/2xC2:c^2=a^2+b^2=5F1(-跟5,0),F2(跟5,0)渐近线y=+-b/a=+-2x
两边除以36得,y^2/9-x^2/4=1,所以,c=√(9+4)=√13,焦点坐标是(0,√13)(0,-√13)(谁的系数为正,焦点就在谁的轴上,本题y的系数为正)
由双曲线的一条渐近线方程Y=-3/2X,可令双曲线方程为(Y-3/2X)(Y+3/2X)=k,则焦距=2根号[|k|+4/9*|k|]=2倍根号13解得k=9或-9所以(Y-3/2X)(Y+3/2X)
x^2-y^2/3=13x^2-y^2-3=0假设两点坐标是(x1,y1),(x2,y2)则(1)过这两点的直线垂直于y=kx+4(2)这两点的中点[(x1+x2)/2,(y1+y2)/2]在y=kx
a=2c=3b^=5,焦点在y轴上,双曲线方程:y^2/4-x^2/5=1
当双曲线的焦点在x轴上时设解析式为x²/a²-y²/b²=1b/a=1;2a=2解得a=b=1此时解析式为x²-y²=1当双曲线的焦点在y轴
双曲线C1的方程设为:y^2/4-x^2/9=a,代入M(9/2,-1),可解出a,那么就很简单了,这中题目的方法均是如此,因为比较简单易懂
双曲线的渐进线方程是y=土2/3x即y/2=±x/3可以设双曲线方程为(y/2+x/3)(y/2-x/3)=ky²/4-x²/9=k又过点(3,√7)即7/4-9/9=kk=3/4
根据题意,双曲线C的一条渐近线方程为x-2y=0,则可设双曲线的方程为x2-4y2=λ(λ≠0),将点M(25,1),代入,得(25)2-4×12=λ,可得λ=16,故此双曲线的标准方程为:x216−
啊啊==题目结尾完整点嘛我怎麼知道是问有几个交点还是交点座标哟...双曲线方程x^2-y^2=1...①,a=b=1於是得双曲线渐近线为y=±(b/a)x=±x,又直线L和渐近线平行,则L的斜率有±1