已知向量abc满足a等于根号2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:37:00
这题采用数形结合较为合适.如图 OA=a ,OB=b ,OC=c ,OD=d ,根据已知条件,可得 |OB|=|AB|=√2 ,|
等于4,先由条件得出向量a,b的夹角为60度,完了再设向量c的模长为x.c-a-b的模长为1,两边平方,进而得出x的一个一元二次方程,完了得出x的求根公式,内含三角函数,取最大值即可
1、|a-b|=根号下(3+4-2*cos30*根号3*2)=12、题目写明白一点.向量2?
面积S=(1/2)|AB||BC|sinθ,θ∈(0,π)|AB||BC|=2S/sinθAB·BC=6|AB||BC|cosθ=6>0,所以θ∈(0,π/2)2Scosθ/sinθ=6sinθ/co
第一问:设向量a为(x1,y1),向量b为(x2,y2)由绝对值向量ab等于根号13得向量a的平方加向量b的平方加2倍的向量a乘向量b等于13又因为绝对值a等于根号3绝对值b等于2所以向量a的平方等于
*c=0,c=a+bb*(a+b)=0b*a+b*b=0,b*b=|b|^2=3b*a=-3cos=a*b/|a||b|=-3/(2*√3)=-√3/2=150°
以下"."表示点乘.因为a=(2,1),所以a^2=5.又因为a.b=10,|a+b|=根号50,所以50=|a+b|^2=(a+b)^2=a^2+2a.b+b^2=25+b^2.所以b^2=25.所
两向量内积等于模长(绝对值)与夹角正余弦值的积,所以,要求内积为正.(同时必须去掉同向的情况)(a+λb)(λa+b)=λa^2+(λ^2+1)ab+λb^2=2λ+(λ^2+1)根号2*根号3*根号
这题怎么没人做?条件有点问题,应该是△AOB是等腰直角三角形吧?令b=(x,y),OA=a-b,OB=a+b,且:OA⊥OB,故:(a-b)·(a+b)=|a|^2-|b|^2=0即:|a|=|b|,
(a-b)·a=0a^2-a·b=02-|a|*|b|cos=02根号2cos=2cos=根号2/2即夹角=45度.
|向量α|²=cos²(A-B)/2+3sin²(A+B)=[1+cos(A-B)]/2+3sin²C=2;所以3sin²C=3/2-½co
这个题最好用数形结合的方法:a和b的位置关系式一定的,|a|=1,|b|=sqrt(2)a·b=1/2,cos=sqrt(2)/4,以b的终点为圆心,半径为1,画一个圆则d就在这个圆上,即:|b-d|
再问:有点看不懂,能否再解释详细一点再答:解释哪里再问:那个答案好像与题目无关,我看不懂再答:再问:图片,虽然写得很详细,但我看不懂再答:晕,哪里不懂啊,第几行再问:第一行,题目所给的已知条件不是向量
用余弦定理,三角形三边分别为│2a│=2,│b│=1,│2a-b│=√3ab夹角即为│2a│和│b│的夹角cos=(│2a│^2+│b│^2-│2a-b│^2)/(2*│2a│*│b│)=(4+1-3
AB、BC分别为向量AB、BC的模向量AB*向量BC=AB*BC*cosα=6S=AB*BC*sin(π-α)/2=AB*BC*sinα/2√3≤S≤3∴√3/3≤2S/(向量AB*向量BC)≤1即√
(1)S=1/2*|AB|*|BC|sina,T=向量AB*向量BC=|AB|*|BC|cosa=6S/T=S/6=1/2*sina/cosa=1/2tana,∴S=3tana∵√3≤S≤3,∴√3/
(1)根号3≤S≤3,即根号3≤1/2AB*BCsina≤3,则有2根号3≤AB*BCsina≤6(1)向量AB*向量BC=6,即AB*BCsin(π-a)=6,AB*BCsina=-6(2)(2)/
∵√3≤|AB||BC|sina/2≤3====>2√3≤|AB||BC|sina≤6……(1)|AB||BC|cosa=6………(2)(1)/(2):√3/3≤tana≤1∴30º≤a≤4