已知向量a与向量b的夹角为120度,|a|=3,|a b|=根号13

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:52:31
已知向量a与向量b的夹角为120度,|a|=3,|a b|=根号13
已知向量a与向量b的夹角为120°,且|向量a|=|向量b|=4,那么|向量a-3向量b|等于?

向量就不用写了,以下字母都代表向量cos(a,b)=ab/|a||b|=cos120=-1/2ab=-1/2*|a||b|=-1/2*4*4=-8|a-3b|=√(a-3b)^2=√(a^2-6ab+

已知|向量a|=3,|向量b|=4,|向量a-向量b|=根号13,则|向量a与向量b|的夹角为多少度

|a-b|=√(a-b)²=√(a²+b²-2ab)=√13;9+16-2ab=13;2ab=12;ab=6;cos=ab/|a|×|b|=6/12=1/2;∴=60°;

已知向量a的模=8,向量b的模=4根号3,向量a与(向量a+向量b)的夹角为60°,则向量a与向量b的夹角为

三个向量围成一个三角形,设a,b,a+b对应角为A,B,C由正弦定理可得sinB/b=sinA/a可得sinA=1,A=90°,所以C=30°向量a与向量b的夹角为180°-C=150°

已知a向量的模=2,b向量的模=1,a向量与b向量的夹角为60°,若向量 2a向量+kb向量与a向量+b向量垂直,则k=

a*b=|a|*|b|*cos60°=2*1*1/2=1向量2a向量+kb向量与a向量+b向量垂直所以(2a+kb)(a+b)=02a²+2ab+kab+kb²=02*4+2*1+

已知向量a的绝对值等于2,向量b的绝对值等于1,向量a与向量b的夹角为π/3,求向量a加向量b的莫点乘向量a-向量b摸,

用平方差公式是犯了概念性的错误,正确的解答为:∵│a+b│^2=a^2+b^2+2ab=│a│^2+│b│^2+2│a││b│cos60度=7∴│a+b│=√7同理│a-b│^2=a^2+b^2-2a

已知a向量+b向量=(2,-8),a向量-b向量=(-8,16),则a向量与b向量夹角的余弦值为____

xa+xb=2xa-xb=-8ya+yb=-8ya-yb=16a(-3,4)b(5,-12)然后用和角定理,这个叫可以被拆成3份,算完就行,答案略

已知向量a的膜=根号2,向量b的膜=1,向量a与向量b的夹角为45度求 使向量(2向量a+λ向量b)与(λ向量a-3向量

设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4

已知向量a与向量b的夹角为a=120°,向量|a|=2,|向量a+向量b|=根号13,求|向量b|

以下全是向量:|a+b|²=a²+b²+2abab=|a|*|b|*cos120°=-|a|*|b|/2所以,|a+b|²=a²+b²+2a

已知向量A与向量B的夹角为120°,|A|=3,|向量A+向量B|=根号13,则|向量B|等于?

(|向量A+向量B|=根号13)左右两边都平方,将向量A与向量B的夹角为120°,|A|=3带入,得到关于B模的二次方程,解得为4

已知向量a的绝对值=2,向量b的绝对值=3,向量a与向量b的夹角为60度,向量c=5向量a+3向量b,向量d=3向量a+

(1)∵向量c‖向量d∴5/3=3/k;k=9/5;(2)∵向量c垂直于向量d∴cd=15a²+5kab+9ab+3kb²=0;15×4+(5k+9)×2×3×cos60°+3k×

已知向量/a/=10,向量/b/=12,a与b的夹角为120度,求:

6036152再问:亲,你把详细步骤发给我呗再答:好。第一题a*b=/a//b/cos120=-60第二题3/5*/a//b/cos120=-36第三展开10a*b+3b^2-8a^2=-1352对不

已知向量|a|=根号3,向量|b|=2,向量a与向量b的夹角为30度,求|向量a+向量b...

|a+b|^2=|a|^2+|b|^2+2|a||b|cos30度=9+4+6√3=13+6√3|a+b|=√(13+6√3)|a-b|^2=|a|^2+|b|^2-2|a||b|cos30度=9+4

已知向量a =(1,2),向量b=(-2,n) 向量a与b的夹角为45°

(1)∵a·b=|a||b|cos(θ),θ为a、b夹角∴-2+2n=√5*√(4+n²)*(√2)/2------①两边平方化简得:8(n-1)²=5(4+n²)---

已知向量a与b的夹角为30度,且a向量*b向量=根号3,则|a向量-b向量|的最小值

a与b的夹角=30ºa.b=√3|a||b|cos30º=√3|b|=2/|a||a-b|^2=|a|^2+|b|^2-2a.b=|a|^2+|b|^2-2√3=|a|^2+4/|

已知向量a,向量b的夹角为60°,且lal=2,lbl=1,则向量a与向量a+2b的夹角为?

a*b=|a||b|cos60°=1a*(a+2b)=a²+2ab=4+2=6|a+2b|=√(a+2b)²=√(a²+4ab+4b²)=√(4+4+4)=2√

已知|a向量|=根号2,|b向量|=3,a向量和b向量的夹角为45°,求当向量a向量+kb向量与ka向量+b向量夹角为锐

因为各种符号比较麻烦,所以我写在了word上,这是截图,答案算出来比较繁琐,请检验

已知向量|a|=1,向量|b|=2,向量a与b的夹角为60°

1、a*b=|a||b|cos60°=1a*(a-b)=a²-ab=1-1=0所以,a垂直(a-b)2、向量a与(a+mb)的夹角为60°即:a(a+mb)=|a||a+mb|cos60°a

已知向量a与向量b不共线,且|a|=|b|=|a-b|则向量a与向量a+b的夹角为多少

∵|a|=|b|=|a-b|∴|a|^2=|b|^2=|a|^2-2a●b+|b|^2∴2a●b=|b|^2=|a|^2∴|a+b|^2=|a|^2+2a●b+|b|^2=6a●b∴|a|^2|a+b

已知|向量a|=3,|向量b|=2,向量a与向量b的夹角为60度,则|向量a-向量b|=?

根据已知可得a*b=|a|*|b|*cos60°=3,因此,由(a-b)^2=a^2+b^2-2a*b=9+4-6=7得|a-b|=√7.