已知命题f(x)=lg(ax²-x 1 16a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:07:12
只有②④正确.原因可以依照对数里面不能为0和负数,还有就是函数的单调性去找寻~
因为p或q为真,p且q为假所以(1)P真Q假则有(将3,5代入式子)(3a-5)(9-a)>0(5a-5)(25-a)小于或等于0而a无解(2)P假Q真则有(3a-5)(9-a)小于或等于0(5a-5
ax-5>0p或q为真命题3a-5>0,a>5/35a-5>0,a>1有一个成立即可所以a>1p且q为假命题a>5/3和a>1都成立,即a>5/3是假命题a
p:ax^2-x+1/16a>0讨论a的取值1.a=0则-x>0,x<0,不满足定义域为R,舍去2.a>0∵定义域为R∴△<0∴a^2>4∴a>2或a<-2∴a>23.a<0∵开口向下,不可能使定义域
lg(ax)*lg(a/x^2)=(lg(a)+lg(x))(lg(a)-2lg(x))=0.得知判别式(lg(a))^2-4*2*(9/8-(lg(a))^2)
命题p或q为真,p且q为假那么p,q中一真一假1)p真q假p真,即f=lg(ax^2-x+1/16a)的定义域为R为真那么ax²-x+1/16a>0恒成立需a>0且Δ=1-1/4a²
对数有意义,ax-2>0ax>20再问:是a的x次方。。再答:哦,那你没写清楚,呵呵。lg(a^x-2)对数有意义,a^x-2>0a^x>2lg(a^x)>lg2xlga>lg20
(1)要使x2-2ax+a>0恒成立,只要△=4a2-4a<0,---------------(2分)得0<a<1.------------------------------------------
真数恒大于0a=0,真数2x+1不保证大于0,不合题意a不等于0,则抛物线开口向上,a>0且最小值大于0,即和x轴没有交点,所以判别式小于04-4a1所以a>1值域是R则真数要取到所有的正数a=0,真
(1)命题p:函数f(x)=lg(ax²-ax+1)的定义域为R,等价于:ax²-ax+1>0在R上恒成立.当a=0时,不等式可化为1>0,显然恒成立;当a≠0时,要使不等式恒成立
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
∵f(x)是偶函数,∴f(x)-f(-x)=0,即lg(10^x+1)+ax-{lg[10^(-x)+1]+a(-x)}=0lg;[(10^x+1)/(10^(-x)+1)]+2ax=0lg10^x+
p:00则a>1/2P或q是真命题,p且q是假命题则他们之中必定一真一假1‘p真q假(0,1/2]2’q真p假(1,+oo)
1不对:y=x²+ax-a-1Δ=a²+4a+1>0恒成立∴y∈(0,+∞)lg(y)∈(-∞,+∞)2对:同理可证3对:y=x²+ax-a-1在【2,正无穷)上单调递增
y0=x^2+ax-a-1Ay=lgy0BA式,对称轴x=-a/2:1,由A函数图像知:x≤-a/2时x↑y0↓.B是单调增函数,y0↓y↓即x↑y↓;而x≥-a/2时x↑y0↑,结合B单调增得x↑y
P:由p得a>0且△1q:设t=3^x,t>03^x-9^x=t-t^2t^2-t+a>0对于t>0恒成立f(t)=t^2-t+a知t=1/2时,f(t)取最小值当f(1/2)>0时,f(t)>0对于
(1)f(x)=lg(ax)•lg(x/a^3)在区间[1,10]上连续,因此可导,f(x)′=lg(x^2/a^2)/(xln10),函数的驻点满足f(x)′,即x=a(a∈[1,10]
(1)ax平方+2x+1=y的图像必须与x轴无交点,且a大于零,且4-4a小于0,据此求得a大于1(2)同理,必须与x轴有交点,求得a大于0小于1
命题P:函数f(x)=lg(ax^2-x+a/16)的定义域为R,即对任意x,g(x)=ax^2-x+a/16>0,因此有a>0,且delta=1-4a^2/162命题q:不等式3^x-9^x0,即t