已知四边形ABCD,E,F分别为AD,BC的中点,求证EF=1 2(AB DC)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:58:51
已知:四边形ABCD是(平行四边形),E.F.G.H分别是边AB.BC.CD.DA的中点.求证:四边形EFGH是(平行四边形).
取BD的中点O连接EO,FO则EO是△ABD的中位线,FO是△BCD的中位线∴EO=1/2AB,EO‖AB,OF=1/2CD,OF‖CD∵AB=CD∴OE=OF∴∠OEF=∠OFE∴∠OEF=∠BMF
E,F分别为AB,AD中点,那么EF就是三角形ABD的中位线,很明显EF∥BDBD又是三角形BCD上的一边,根据定理,平面外一条直线平行于平面内任意一条直线,那么这条直线就与平面平行所以EF∥平面BC
由三角形中位线定理先推出EF//BD,由空间四边形的条件推出A不在平面BCD内,进一步推出E不在平面BCD内(因为B在平面BCD内,若E在平面BCD内,那么直线BE就在平面BCD内,A也就在平面BCD
连结AD中点O.连结OE、OF,则在三角形ADC中,有OF=AC/2,同理,在三角形ABD中,有OE=BD/2,而EF≤OE+OF=(AC+BD)/2,所以2EF≤AC+BD.(等号当O、E、F成一直
取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF
解题思路:请填写破解该题的切入点、思路脉络及注意事项(20字以上),学生将对此进行打分度解题过程:你拍一张完整的图好吗?
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
连接AC和BD则EH是三角形ABD的中位线,所以EH//BD.同理得FG//BD所以EH//FG同理EF//GH两对变相互平行,所以EFGH为平行四边形得正
(1)连ABCD的任一条对角线,如BD,由中位线可得EFGH一组对边平行且相等,所以EFGH为平行四边形(2)由第一问可知,EFGH为平行四边形,所以当AC、BD相等时,EFGH为菱形当AC、BD互相
取BD的中点为E,连接CE和AE,构成三角形ADC,则BD、AC间的距离就是AC到点E的距离:可计算出AE=CE=根号3,AC=2,所以AC到点E的距离是;根号[(根号3)^2-1]=根号2,也就是B
连接AC,BD因为E是AB的中点,H是AD的中点所以EH就是△ABD的中位线所以EH∥BD且EH=1/2BD同理在△CBD中,也可以得出FG∥BD且FG=1/2BD所以EH=FG且EH∥FG用同样的方
如果是矩形,则变成菱形;如果是菱形,则变成长方形;如果是正方形,则还是正方形
将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.
2.连接OE∵E是BC的中点底面ABCD为正方形O为对角线交点∴OE//AB2OE=AB∵正方体ABCD-A'B'C'D∴NB'平行且=OE∴OEB‘N为平行四边形∴ON平行EB’所以ON平行面B'D
因为:E.F分别是AB.CD的中点,所以:AE=FC,又因为:AB‖CD所以:四边形AECF是平行四边形所以:AF‖EC同理:EG‖HF所以:四边形EHFG是平行四边形.
连接BD因为E、F、G、H分别是AB、BC、CD、DA边的中点(中位线定理)所以GF=1/2BD切平行于BDHE=1/2BD且平行于BD所以GF平行却等于HE所以EFGH是平行四边形.
连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE
证明:CE、CF的延长线分别交AB、AD于G,H连接AE,AFDF/DE=DH/DA=1/2所以FH平行于AE即CF平行于AEBE/BF=BG/BA=1/2所以EG平行于AF即CE平行于AF所以AEC
证明:因为四边形ABCD是平行四边形所以,AB//CD所以,角BAD+角ADC=180因为AF平分角BAD,DF平分角ADC所以,角FAD=1/2角BAD,角ADF=1/2角ADC所以,角FAD+角F