已知圆o为三角形abc的外接圆,BC为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:46:55
已知圆o为三角形abc的外接圆,BC为直径
已知圆的方程和圆外一点c,作切线,切点为a,b两点,求三角形abc外接圆?

就说一下思路.圆心o坐标为xo,yoc坐标未xc,yc新园的圆心坐标是oc的中点.如果命名为z,则xz=(xo+xc)/2,yz=(yo+yc)/2半径是oc长度的一半.r=根号下(xo-xc)^2+

已知圆O为三角形ABC的外接圆,边长为6,求圆O的半径

题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3

如图 已知 圆O为三角形ABC的外接圆 OE是圆O的直径 CD垂直AB D为垂足 求证∠ACD=∠BCE

证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.

如图已知圆O为三角形ABC的外接圆CE是圆O的直径,CD⊥AB,D为垂足.求证:∠AED=∠BCE

证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.如果不理解可以继续追问,您也可以向我们的团

已知三角形的三边长为4.5.6则三角形ABC的外接圆的面积为?

假设a=4,b=5,c=6cosA=(b^2+c^2-a^2)/2bc=3/4因为(sinA)^2+(cosA)^2=1且三角形内角在0到180度之间所以sinA>0所以sinA=√7/4由正弦定理a

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

如图已知圆o是三角形abc的外接圆,若角a等于55度,则角boc等于多少度.

角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°

已知圆O是三角形ABC的外接圆 CD是AB边上的高,AE是圆O的直径.求证:AC*BC=AE*CD

证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

已知圆O是边长为2的等边三角形ABC的外接圆,求圆O的半径

 再问:最后看不清再答: 再答:这样呢再问:看清了

已知圆O是边长为2的等边三角形ABC的外接圆.求圆O的半径!

由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3

已知:AD是三角形ABC外接圆O的直径,AE是三角形ABC边BC上的高,DF垂直BC,F为垂足

过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.

如图已知圆O为三角形abc的外接圆,∠A=30°,bc等于2cm,求圆o的直径(初三知识)

连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm

已知O为三角形ABC的内心,延长AO交外接圆于D,求证BD=OD=CD.

怎么说呢,很难说.我先口述,如果看不懂就发信息给我.内心即为角平分线交点所以∠BAO=∠OAC,角相等,所以弧BD=弧CD,等弧对等弦,所以BD=CD连接BO因为BO为∠B的角平分线,所以∠CBO=∠

如图,已知o为三角形ABC的内心,延长AO交外接圆于D,求证BD=OD=CD

楼上的,∠CAD=∠DAB,就得出CD=BD?证据不足啊等角对等边是对于同一个三角形,或两个全等形而言的哦.

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B