已知圆o的直径为4,弧AC的度数为80,点B是弧AC的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:59:06
已知圆o的直径为4,弧AC的度数为80,点B是弧AC的中点
已知AB为圆O的直径,CD垂直于AB,AC弧等于FC弧,求证AE=CE

连接CO交AF于H连OEAC弧等于FC弧所以C为AF弧的中点则OC⊥AF因为CD⊥ABOC=OA∠COD=∠AOH△COD≌△AOH则OD=OH则CH=AD可推△EAD≌△EVHAE=CE

如图已知BC为圆O的直径,G为弧AC的中点,AD垂直BC于点D,求证AE=AF.

证明如下:∠GBC=∠ACG(同弧对应的角相等)∠GBC+∠BED=90∠ACG+∠CFG=90所以∠CFG=∠BED又∠BED=∠AEF∠AFE=∠CFG(对顶角)所以∠AEF=∠AFE所以AE=A

圆O中,已知圆O的直径为2,弦AC为根号3,弦AD为根号2,则DC^2= 求详细步骤

设直径为AB,1.若C,D分别在AB的两侧∵∠ACB=90度∴sin∠ABC=AC/AB=√3/2∴∠ADC=∠ABC=60度∵∠ADC=90度∴sin∠ABD=AD/AB=√2/2∴∠ACD=∠AB

在圆O中,已知圆O的直径为2,弦AC长为根号3,弦AD长为根号2,则∠CAD=

一个是AD的点D,在劣弧AC上,此时,角DAC等于15度,(45-30)度.另一种情况是D在优弧上.此时,角CAD等于75度,(30+45度).

已知AB是圆O的直径,弧AC的度数为60°,如果圆O的半径为2cm,那么弦AC的长为?

OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2

已知:如图,AB为圆O的直径,BD=CD,交圆O于点D,AC交圆O于点E.

连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)

如图,已知BC是圆O的直径,G为弧AC的中点,AD⊥BC于点

解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略

如图,已知AB为圆O的直径,AC为弦,D为AC的中点,BC=8cm,求OD的长.

因为AB是圆的直径所以2AO=AB又D为AC的中点所以2AD=AC又角DAO=角CAB所以三角形DAO相似于三角形CAB所以2OD=BC=8cmOD=4

已知AB为圆O的直径,AC为弦,过点B作圆O的切线,交AC的延长线于点D,E为弧AB的一点,求证:∠E=∠D

证明:连结BC.因为BE是圆O的切线,AB是圆O的直径,所以角ABD=90度,因为AB是圆O的直径,所以角ACB=90度,所以三角形ABC相似于三角形BDC,所以角ABC=角D,因为点E在弧AB上,所

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

在圆O中,已知圆O的直径AB=2,弦AC长为1,弦AD长为根号2,则角DAC的度数为?

半径=2/2=1△OAD中,AB=√2,OA=OD=1可得AB²=OA²+OD²∴∠AOD=90同理△OAC中,OA=OC=AC=1得∠AOC=60∴∠DAC=90+60

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

如图,在圆O中,已知直径AC的长为4,弦AB的长为2根号3,求(1)弧BC的度数

连接B,C,由于三角形ABC为直角三角形,得BC=2,弧BC的度数∠BAC=30°,∠BOC=60°.阴影部分面积等于三角形AOB与扇形BOC的面积之和,即为√3+4∏/6=√3+2∏/3.

已知ab是圆o的直径,ac,ad为弦,若∠cab=∠dab,求证弧ad=弧ac

因为角cab=角dab所以ad=ac所以弧ad=弧ac

已知在△ABC中,AB=AC,圆O为△ABC的外接圆,CD为圆O的直径,DM//AC交AB于M.

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B