已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:11:46
已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.
如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥AC

证明:(1)∵SA⊥底面ABC∴SA⊥AB∵AB⊥AC∴AB⊥平面SAC(2)如图,做AD⊥BC,交点为D,连接SD,做AE⊥SD,交点为E∵SA⊥底面ABC∴SA⊥BC∵AD⊥BC∴BC⊥平面SAD

如图所示,已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.求证:平面ABC⊥平面ASC.

取AC中点D.连接SD.BD求证:∠SDA是90°(明白?)证明:∵D是AC的中点∠ABC是90°∴AD=DC=DB又∵SA=SB∴▷SAD全等于▷SBD又∵SA=SC.D是A

已知三棱锥S-ABC的四个顶点都在半径为1的球面上,必有重谢

由SA=SB=SC故有S在底面ABC的投影为球心O,O为ABC的重心,所以可知道OA=1,而OA=根号3/3AB,可得AB长,而且高SO=1,所以体积就可以求出来等于根号3/4

三棱锥S-ABC中,S'是S在底面ABC内的射影.若S'到三个侧面距离相等,求证:S’是底面三角形的内心

如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)可得出SE=SF=SGS'P=S'Q=S'R  

在三棱锥S ABC中,SA⊥平面ABC,平面SAB⊥平面SBC ,求证:AB⊥BC.

你确定题目是这样的吗如果题目是这样的话就很简单了因为平面SAB⊥平面SBCAB⊥BC而ABBC又分别属于平面SAB平面SBC所以AB⊥BC

已知在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的重心,则BC与平面APQ的位置关系是

平行分别延长AP,AQ到AC,AB交AC,AB于M,N显然M,N分别是AC,AB的中点故MN‖BC由重心的性质知AP/PM=2/1=AQ/QN由平行线分线段成比例定理知PQ‖MN故PQ‖BC又BC不含

已知在三棱锥S-ABC中,SA,SB,SC,两两互相垂直O点为底面三角形ABC的垂心,求证SO垂直平面ABC

证明,设DEF,分别S在是BC,CA,AB上的垂足,D'是AO与BC的焦点很容易有BD^2-CD^2=SB^2-SC^2BD-CD=(SB^2-SC^2)/BCBD'^2-CD'^2=AB^2-AC^

已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.

证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两

已知三棱锥S-ABC中,SA=SB=SC=AB=AC=2,则三棱锥S-ABC体积的最大值为 ______.

如图,三棱锥S-ABC中,SA=SB=SC=AB=AC=2,三棱锥S-ABC的体积为:VS-ABC=VB-SAC,当且仅当平面BAS⊥平面SAC时,三棱锥S-ABC的体积最大,此时,在平面BAS中,作

已知在三棱锥p-ABC中,定点p在底面ABC内的射影为三角形ABC的垂心”

设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂

在三棱锥P-ABC中

解题思路:利用均值不等式计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re

已知:在三棱锥V-ABC中,V为顶点,VA=VC,AB=BC,

取AC中点X在等腰三角形VAC中VX⊥CA同理BX垂直ca所以ca垂直于VXB所以vb垂直于vc证毕

#高考提分#如图所示,已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.求证:平面ABC⊥平面ASC

取AC中点D.连接SD.BD∵D是AC的中点∠ABC是90°∴AD=DC=DB又∵SA=SB∴▷SAD全等于▷SBD又∵SA=SC.D是AC的中点∴∠SDA=90°∴SD⊥面A

在三棱锥S-ABC中,侧棱SA=SB=SC,角ABC=90度,求证:平面ABC垂直平面ASC

证明:作SH⊥AC交AC于点H∵SA=SC∴AH=HC在Rt△ABC中,H是AC的中点∴BH=1/2AC=AH又SH=SH,SA=SB∴△SAH≌△SBH(SSS)∴SH⊥BH又AC∩BH=H∴SH⊥

在三棱锥S-ABC中,侧棱SA ,SB,SC两两垂直且长度为a,则三棱锥S-ABC中的外接球的表面面积为

SA、SB、SC两两垂直,可把SA、SB、SC看成一个长方体的三条边,把长方体补全,由对称性长方体的8个顶点都在外接球上,球直径是长方体角线的长度,由勾股定理有直径d^2=4^2+2^2+2^2=24

在三棱锥s-abc中,三角形abc是边长为4的正三角形,sa=sc,证明ac⊥sb

S在面abc内的投影是正三角形的中心O,做辅助线SO.AO.BO.CO用三垂线定理即可证明.

在正三棱锥S-ABC中,侧棱SC⊥侧面SAB,侧棱SC=23

∵三棱锥S-ABC正棱锥且侧棱SC⊥侧面SAB,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=23•3,∴R=3,∴S=4πR2=4π•(3)2=36π,

已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,

对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)

如图,已知三棱锥S-ABC中,角ASB=角BSC=角CSA=90度,求证三角

依题意可得AB^2=SA^2+SB^2,AC^2=SA^2+SC^2,BC^2=SB^2+SC^2,2AB*BC*cos∠ABC=AB^2+BC^2-AC^2=2SB^2>0,所以cos∠ABC>0,