已知复数z与(z 2)²-8i都是纯虚数,求z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:08:38
1.设z=a+biz+|z|=a+bi+根号(a^2+b^2)=2+8i所以b=8a=-152.设z1=a+biz2=c+diz1+z2=(a+c)+(b+d)ia^2+b^2=25c^2+d^2=9
设z=x+yi(x,y∈R),∵(1+3i)z=(1+3i)(x+yi)=(x-3y)+(3x+y)i∈R∴虚部3x+y=0,即y=-3x &
设z=x+yi,(x、y∈R),则(1+3i)•z=(x-3y)+(3x+y)i为纯虚数,∴x-3y=0,3x+y≠0,∵|ω|=|z2+i|=52,∴|z|=x2+y2=510;又x=3y.解得x=
z1=1-2i,1/z1=1/(1-2i)=(1+2i)/5z2=3+4i,1/z2=1/(3+4i)=(3-4i)/251/z=1/z1+1/z2=(1+2i)/5+(3-4i)/25=(5+10i
设z=a+bi∵z2=i,∴(a+bi)2=i,∴a2-b2+2abi=i,∴a2=b2,2ab=1,∴a=22,b=22或a=-22,b=-22∴z=±22(1+i)故答案为:±22(1+i)
1/(1-2i)+1/(3+4i)=(1+2i)/5+(3-4i)/25=(8+6i)/25所以z=25/(8+6i)=25(8-6i)/100=2-(3/2)i
由z=2i1+i=2i(1−i)(1+i)(1−i)=2+2i2=1+i.所以z2=(1+i)2=1+2i+i2=2i.故选A.
z1+z2:10+5i﹉①2z1-z2=8+i﹉②①+②得:3z1=18+6iz1=6+2i所以z2=10+5i-6-2iz2=4+3i再答:请采纳哦~再答:O(∩_∩)O
利用图像法.点z1在x轴上,点z2在y轴上,因为|z-z1|=|z-z2|,即z到z1的距离等于z到z2的距离,即z必在∠z1Oz2的角平分线上,所以z在一,三象限的角平分线上,即辐角主值为π/4或5
(1)z=-2i+3+3i2-i=3+i2-i=1+i,(2)把Z=1+i代入z2+az+b=1-i,即(1+i)2+a(1+i)+b=1-i,得a+b+(2+a)i=1-i.所以a+b=12+a=-
设z2=x+yiz1*z2=(1+3i)(x+yi)=x-3y+(3x+y)i+为纯虚数,则x=3yz2=3y+yi|z2|=y√10|(z+2i)|=2√2|z2/(z+2i)|=y√10/(2√2
设z=a+bi(a,b∈R),|z|=a2+b2,代入方程得a+bi+a2+b2=2+8i,∴a+a2+b2=2b=8,解得a=−15b=8,∴z=-15+8i..z=-15-8i.
1/z=1/(5+10i)+1/(3-4i)=(3-4i+5+10i)/(5+10i)(3-4i)=(8+6i)/(15-20i+30i+40)=(8+6i)/(55+10i)z=(55+10i)/(
z1z2=a+2i3−4i=(a+2i)(3+4i)25=(3a−8)+(6+4a)i25,因为z1z2为纯虚数,所以3a-8=0,得a=83,且6+4×83≠0,所以a=83满足题意,故z1=83+
设z1=a+bi,∵(3+i)z1为实数,∴(3+i)(a+bi)=3a-b+(a+3b)i∴a+3b=0,∴z1=a+bi=-3b+bi∵z2=z12+i=−3b+bi2+i=(−3b+bi)(2−
Z=Z2/Z1=(8-2i)/(3-5i)=[(3+5i)(8-2i)]/(3^2+5^2)=(1+i)=√2[cos(∏/2)+sin(∏/2)i].
设z=ai,a≠0,则(z+2)²=(ai+2)²=-a²+2ai+4上式为纯虚数,则4-a²=0所以a=±2故z=±2i
(Ⅰ)设复数z=a+bi(a,b∈R),由题意,z+2i=a+bi+2i=a+(b+2)i∈R,∴b+2=0,即b=-2.又z2−i=(a+bi)(2+i)5=2a−b5+2b+a5i∈R,∴2b+a
∵z1=1+i,z2=1+bi,则z2z1=1+bi1+i=(1+bi)(1−i)(1+i)(1−i)=1+b+(b−1)i2,∵z2z1为纯虚数,∴b+1=0b−1≠0,即b=-1.故答案为:-1.