已知如图,AB 是元o的直径,BC是元O的切线,切点为B,oc平行于弦AD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:17:26
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
证明:连结AO交圆与点D,连结DB,则因为
因为AD+DB=AB=13所以OA=7.5=半径联结oc,oc为半径=7.5DO=OA-AD=3.5勾股出CD再勾股CB
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.
E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
证明:连接OD∵BC是⊙O的切线∴∠OBC=90°∵AD‖OC∴∠A=∠BOC,∠ODA=∠DOC∵OA=OD∴∠A=∠ODA∴∠DOC=∠BOC∵OD=OB,OC=OC∴△OCD≌△OCB∴∠ODC
图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=
列方程x^2-(9r/2)x+2r^2=0,解x=4r或x=r/2,所以OC=4r,CD^2=(4r)^2-r^2=14r^2,CD=(根号下14)*
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
设AC、BD为点A、B到直线l的距离线段,C、D是垂足.则ACDB构成直角梯形,AC、BD是其上下底,直径AB是腰,中位线为圆的半径∴AC+BD=2*半径=0.8
∵AB是⊙O的直径∴∠ACB=90°∵∠BAC=2∠B∴∠BAC=60°,∠B=30°∴∠AOC=2∠B=60°(同弧所对的圆心角等于2倍的圆周角)∵OA=OC∴△OAC是等边三角形∴AC=OA∵AP
连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO
(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
连接BD,则∠ADB=90°;∵AD∥OC,∴OC⊥BD;根据垂径定理,得OC是BD的垂直平分线,即CD=BC;延长AD交BC的延长线于E;∵O是AB的中点,且AD∥OC;∴OC是△ABE的中位线;设
连接OD;∵AD平行于OC,∴∠COD=∠ODA,∠COB=∠A;∵∠ODA=∠A,∴∠COD=∠COB,OC=OC,OD=OB,∴△OCD≌△OCB,∴∠CDO=∠CBO=90°.∴DC是⊙O的切线