已知如图,p是正方形abcd中一点,角pad等于角pda

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:57:17
已知如图,p是正方形abcd中一点,角pad等于角pda
如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点

相似,设正方形边长为a,因为P是BC上的点,且BP=3PC;所以PC=1/4a,又因为Q是CD的中点,所以DQ=QC=1/2a;所以AP=5/4a,AQ=√5/2a,PQ=√5/4a;所以,AP:AQ

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证(1)PC

(1)证明:连BD,AC交于O.∵ABCD是正方形∴AO=OCOC=AC/2取PC中点M.连EM.则EM是三角形PAC的中位线.EM∥AC且EM=AC/2∴EM∥OC且EM=OC连EO.则EOCM是平

已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PCQ是CD的中点

问题是求证△ADQ∽△QCP?∵BP=3PC,∴PC=BC/4又ABCD为正方形,∴AB=BC=CD=DA∴PC=DA/4=CD/4又Q是CD中点,∴DQ=CQ=AB/2=BC/2=CD/2=DA/2

已知,如图1,在正方形ABCD中,P是对角线AC上点,E在BC延长线上,且PE=PB

(1)证明:设CD与PE相交于O因为四边形ABCD是正方形所以CD=CB角DCP=角BCP角BCD=90度因为CP=CP所以三角形DCP和三角形BCP全等(SAS)所以角PDC=角PBC因为PB=PE

如图,已知正方形ABCD中,Q是CD的中点,P是CQ上一点,且AP=PC+CD,求证∠BAP=2∠QAD

延长DC至F, 使CD=CF∵AP=PC+CD ∴AP=PF ∴∠1=∠2∵ABCD是正方形 ∴AB//=CD ∠1=∠3∴△ABE≌△FCE∴BE=

如图,已知正方形ABCD中,P是BC边上的点,BP=3PC,Q是CD的中点.求证;

证明:因已知正方形ABCD中,p是BC边上的点,BP=3PC,Q是CD的中点,所以AQ=根号5/2AQ,PQ=根号5/4AQ,AP=2根号5/2AQ.所以AD:AP=DQ:QP=AQ:AP=根号5/2

如图,已知正方形ABCD中,P是BC边上的点,BP=3PC,Q是CD的中点,求证(1)△ADQ∽

(1)证明:∵在正方形ABCD中,bp=3pc,设pc为k,则bp=3k,∵BC=DC,所以DC=cp+bp=k+3k=4k.∵q为DC中点,∴dp=pc=2k则qc:cp=ad:dq=2又∵∠ADC

已知:如图,正方形ABCD中,E、F分别是AB、BC上两点,且角EDF=45度,DP⊥EF于P,求证:DP

证明:【正方形的边相等,角等于90º我就不写了】延长BA至H,使AH=CF,连接DH∵AH=CF,AD=CD,∠HAD=∠FCD=90º∴⊿HAD≌⊿FCD(SAS)∴DH=DF,

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度.求证:PB+DQ=PQ

证明:延长CD到点E,使DE=BP连接AE则△ADE≌△ABP(SAS)∴AE=AP,∠DAE=∠BAP∵∠DAB=90°,∠PAQ=45°∴∠BAP+∠DAQ=45°∴∠EAQ=45°=∠PAQ∵A

已知 如图,在正方形ABCD中,P是CD上一点,DE⊥AP,垂足分别为E、F.求证:AE=DF

因为ABCD为正方形,所以AB=AD,∠BAD=∠BAE+FAD=90度.因为DE⊥AP,垂足分别为E、F,所以∠AFD=AEB=90度,所以∠FDA+∠FAD=90度.所以∠ADF=∠BAE.因为∠

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

已知:如图,正方形ABCD中,P为形内一点,且AP=1,BP=2,CP=3,则正方形ABCD的面积等于()

正确选项为(D).作BE垂直BP,使BE=BP(点E和P在BC两侧),连接PE,CE.则:∠BPE=∠BEP=45°;PE²=BE²+BP²=4+4=8;∵∠EBP=∠C

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

已知:如图,正方形ABCD中,P是BD上一点,AP的延长线交CD于点Q,交BC延长线于G,

证明:∵四边形ABCD是正方形,∴AB=BC,∠1=∠2,AD∥BC,∴∠4=∠G,∵M是GQ的中点,∴CM=MG,∴∠6=∠G,∴∠6=∠4,∵AB=BC,∠1=∠2,BP=BP,∴△ABP≌△CB

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P