已知如图,点ef分别是平行四边形abcd的边adbc的中点,且ad等于2ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:11:32
(1)∵DE∥BC,EF∥AB,∴∠AED=∠ECF,∠CEF=∠EAD.∴△ADE∽△EFC.(2)∵DE∥BC,EF∥AB,∴∠C=∠AED,∠FEC=∠A,∴△EFC∽△ADE,而S△ADE=2
证明:∵ABCD是平行四边形∴AB=CD∵E,F分别为AB,BC中点∴BE=DF∵AB‖CD∴∠DFM=∠BEM∵∠DMF=∠BME∴△DMF≌△BME∴EM=FM
由EF=ED,EF⊥ED,得∠BEF+∠CED=90°,因∠CDE+∠CED=90°,所以∠BEF=∠CDE,所以△BFE≌△ECD,所以BE=CD=4,BF=CE=3,AF=1BE=AB,∠BAE=
BE+CF>EF证明:延长FD到点G,使DG=DF,连接BG∵BD=CD,FD=DG,∠BDG=∠CDF∴△BDG≌△CDF∴BG=CF∵ED⊥FG∴EF=EG在△ABG中,BE+BG>EG∵BG=C
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
证明:∵ABCD是平行四边形∴AB=CD∵E,F分别为AB,BC中点∴BE=DF∵AB‖CD∴∠DFM=∠BEM∵∠DMF=∠BME∴△DMF≌△BME∴EM=FM希望对你有所帮助再问:BE=DF,从
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
直线AB//CD理由:因为MP⊥NP所以∠PMN+∠PNM=90°因为MP,NP分别是∠AMN和∠CNM的角平分线所以∠AMN=2∠PMN,∠CNM=2∠PNM所以∠AMN+∠CNM=2∠PMN+2∠
1、角ced+角bef=90°,角bef+角bfe=90°,角b=角c,ef=ed2、所以三角形bfe全等于三角形ced3、所以be=cd4、因为cd=ba5、所以be=ba6、所以三角形abe是等腰
证明:易得∠DHE=∠CHF=60°(对顶角相等)∵AB∥CD∴∠EKG=∠DHF=60°∴∠EGK=180°-(∠EKG+∠KEG)=180°-90°=90°故△EKG是直角三角形.//------
EF是中位线,EF平行于BC再问:请问这是什么性质,我不记得了再答:中位线定理,三角形的中位线平行于第三边并且等于它的一半
因为平行四边形ABCD,所以有∠BAD=∠BCD.又因为AE=CF,AD=BC,所以有△AED≌△BCF,所以ED=BF,所以EM=NF.因为AE=CF,所以有BE=DF,又因为BE∥DF,所以BED
证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EB
四边形ABCD是平行四边形或矩形吧?如果是,可参考下面的证明证明:在平行四边形ABCD中,AB=CD,AB∥CD∴∠5=∠6∵G、H是AB、CD的中点∴AG=CH又∵AE=CF∴△AEG≌△CFH(S
由AB平行CD推得CO/AO=FO/EO,因为CO=AO所以FO=OE.由四边形AECF对角线互相平分可知该四边形是平行四边形.再问:要两种方法再答:由AB平行CD推得CO/AO=CF/AE,因为CO
CD+CG≥2EF证明:过C作CG//AB交直线AF于G,连结DG则CD+CG≥DG(当AB//CG时取等号)∵CG//AB,点F是BC的中点∴在△ABF与△GCF中∵∠B=∠GCF,BF=CF,∠A
证明:∵DE//AB∴∠DEC=∠BAC∵EF//AD∴∠DEF=∠DAC∵AD是△ABC的角平分线∴∠DAC=1/2∠BAC∴∠DEF=1/2∠BAC=1/2∠DEC即EF平分∠DEC【数学辅导团】
∠OAD=∠OCB,AECF分别平分∠DAC∠BCA∴∠EAD=∠FCB①又∵AD=BC②∠ADE=∠CBF③∴△ADE≌△CBF∴ED=FB∵OD=OB∴OE=OF④∵OA=OC⑤∴AFCE是平行四
∠BEF=∠CDE∠B=∠CEF=ED△BEF≌△CDEBE=CDCD=ABBE=AB∠BAE=∠BEA=45°AE平分∠BAD
证明:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠DAO=∠BCO∵∠AOE=∠COF∴△AOE≌△COF(ASA)∴AE=CF∴平行四边形AECF(对边平行且相等)