已知实数域上三阶矩阵A的特征值为:1,-2,-2,则A的转置
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:10:24
设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-
这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值
对任一非零实列向量x,总有x^T(A^TA)x=(Ax)^T(Ax)>=0而实对称矩阵的特征值都是实数所以实对称矩阵A^TA的特征值都是非负实数
一般来讲不相等简单的例子A=0100
要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.
因为矩阵A的特征值为1,-2,3所以2A+I的特征值分别为2+1=3,2×(-2)+1=-3,2×3+1=7所以B=(2A+I)^-1特征值为1/3,-1/3,1/7.
矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦
实矩阵的特征值不一定都是实数,只有实对称矩阵的特征值才保证是实数.复矩阵的特征值也可能有实数.例如[1i;-i1]的特征值就是0和2,两个都是实数.
|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式
除非n=1,不然怎么可能有那么强的结论,随便举个反例就行了即使加上AB=BA的条件,也得额外考虑一个排列的问题,没那么轻描淡写再问:矩阵四则运算后,和原来的特征值和特征向量还有关系吗?再答:大多数情况
题:已知矩阵A的特征值为k,求A的平方的特征值.由以下命题3知,上题答案为k^2.以下摘自我的某个答题,未加改动.命题3:(证明见后)若方阵A有特征值k,对应于特征向量ξ,当f(A)为A的幂级数(允许
仅证A即可.A是Hermite矩阵,则A^H=A,A^H是A的共轭转置,设a是A的任意特征值,x是相应特征向量,则Ax=ax,两边取共轭转置得x^HA^H=a*x^H,其中a*是a的共轭复数,两边分别
首先,要求合同矩阵的话大前提是对称矩阵,因为一般的矩阵不一定可以对角化,否则若当标准型就没用了.其次,你说的做法是可以的,求出来的矩阵是对角矩阵,而且T是正交矩阵,或者你也可以把A与E放在一起,A上E
A^TA的特征值是A的奇异值的平方,与A的特征值没有很直接的联系
A2的特征值为1,1,4A2+2E的特征值为3,3,6
已知矩阵A的一个特征值为λ,求矩阵E+A的一个特征向量矩阵A有一个特征值为λ,说明|λE-A|=0于是|(λ+1)E-(E+A)|=0即λ+1为E+A的一个特征值.于是解线性方程:(E+A)ξ=(λ+
二阶矩阵特征多项式有是个二次多项式,已知它的两个根是1和2,所以特征多项式就是(t-1)(t-2)即t^2-3t+2再答:有哪里不清楚继续问吧再答:记得采纳我的答案哦~再问:谢谢啦