已知总体的密度函数,简单随机样本的密度函数为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:41:37
题目已经指出是简单随机样本,就说明X1...XN是独立的.
意思是你要从6个里面抽出3个,是随机抽的,这3个就叫样本.再比如从100个灯泡里随机抽10个,这10个就是样本
你的理解不完全对!每个个体被抽中的概率是相等的!假设这6个样品中,有一个样品叫a第一次抽,被抽到a的概率的1/6.这个和你理解的是一样的!关键是第二次抽~抽第二次,可以理解成,第一次没抽到a,第二次才
1)a{∫(0~)e^(-x)dx}{∫(0~)e^(-y)dy}=1a*1*1=1a=12)F(x,y)=∫(0~x)∫(0~y)e^(-u+t)dudt=(1-e^(-x))(1-e^(-y))(
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
置信水平为1-a的置信区间为[(X-σ/(根号n)Z(a/2),X+[(X-σ/(根号n)Z(a/2)]X为算术平均数a=1-90%=10%Z(a/2)=?(查表可以知道)把数据代入得置信区间!(2)
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
该样本遵从二项分布,则可先写出其分布律,然后将n个这样分布律联乘,之后这个连乘的函数取对数,再对取完对数后得到的函数对变量p求导,并令其等于零,得到的p就是其最大似然估计量,如果取完对数后得到的函数对
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位.特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性.简单随机抽样是其它各种抽样形式的基础.通常只
矩估计并不要求无偏估计,矩估计的要求就是用样本矩来代替总体矩,σ²是二阶中心矩,S²不是中心矩,因此矩估计时一般选σ²,这是符合矩估计定义的.而且在一次实验中其实也很难确
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
简单随机抽样,也叫纯随机抽样.就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位.特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性.简单随机抽样是
样本容量为200的简单随机样本,样本均值X'~N(300,40^2/200)=N(300,8)样本均值落在总体均值正负5以内的概率=P(295
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的