已知抛物线cy^2=-2x过点p1,1的直线l斜率为k

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:30:04
已知抛物线cy^2=-2x过点p1,1的直线l斜率为k
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10

已知抛物线方程x²=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B;求证:直线AB过定点(0,4).设过P的切线方程为y=k(x-t)-4,代入抛物线方程得x

已知抛物线C1:x^2=y,圆C2:x^2+(y-4)^2的圆心为点M.已知点P是抛物线C1上的一点(异于原点),过点P

设点P(x0,x02),A(x1,x1^2),B(x2,x2^2);由题意得:x0≠0,x2≠±1,x1≠x2,设过点P的圆c2的切线方程为:y-x02=k(x-x0)即y=kx-kx0+x02①则|

已知抛物线 y^2=4x上一点P到抛物线准线的距离为5,求过点P和原点的直线的斜率.

准线是x=-1,P到抛物线准线的距离为5,则P的横坐标为4,把x=4代入抛物线得y=±4;所以P(4,±4)当P(4,4)时,Kop=1;当P(4,-4)时,Kop=-1;希望能帮到你,如果不懂,请H

已知抛物线y^2=4x上一点P到该抛物线的准线距离为5,则过点P和原点直线的斜率为?

其准线为x=-1p到准线的距离为5则铺垫的坐标可为(4,-4),(4,4)则斜率k为4/4=1和-4/4=-1

如图,已知抛物线y=-4x^2+13/2x+3与y轴,x轴正半轴分别交于点A,B,点P是该抛物线一个动点,过点P作PC∥

(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2

已知抛物线C:x^2=4y,M为直线:y=-1上任意一点,过点M做抛物线的两条切线MA,MB,

点击放大图片很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题.有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

已知抛物线C:X^2=-Y,点P(1,-1)在抛物线C上,过点P作斜率为K1、K2的两条直线,分别交抛物线C于异于点P的

把斜率为k的直线方程表示出来,然后联立这个方程和抛物线方程,消去y,获得一个关于x的一元二次方程,这个方程的一个根是1(因为直线与抛物线的一个交点已经是P,方程的一个根就是这个点P的横坐标)由韦达定理

已知抛物线y2=2x,过点Q(2,1)作一条直线交抛物线于A.B两点,试求弦AB中点的轨迹方程

1,设A(x1,y1),B(x2,y2),AB中点P(x0,y0),则:将A,B坐标代入抛物线方程得:y1²=2x1……①y2²=2x2……②①-②得:(y1-y2)(y1+y2)

如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线

这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.以下是奥林匹克高手的解法,方法正确,请检验计算结果.PQ:y=kx-1x^2=2py=2p*(kx-1)x^2-2pk

已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.

http://cache.baidu.com/c?m=9f65cb4a8c8507ed4fece7631043843b4007dd743ca0884e23d7955f93130a1c187b84fa7

已知抛物线y^2=2x,点A(0,1),求过点A且与抛物线只有一个公共点的直线方程

设过点A(0,1)的直线方程为y=kx+b把x=0y=1代入方程得1=b所以直线方程是:y=kx+1代入抛物线方程得:(kx+1)^2=2xk^2x^2+2kx+1=2xk^2x^2+(2k-2)x+

已知抛物线C:X =2py(p>0)过点A(-2,1),求抛物线C的方程

以x=-2、y=1代入,得:(-2)²=2pp=2则:抛物线方程是:x²=4y再问:若直线y=kx-1与抛物线C相切,求K的值再答:将y=kx-1代入抛物线x²=4y中,

已知抛物线y=a(x-h)2当x=2时 有最大值 此抛物线过点(1,-3)求抛物线的解析式 并指出当x为何值时 y随x的

当x=2时,y有最大值,∴x=2是它的对称轴,∴h=2,将点﹙1,-3﹚代入解析式得:y=a﹙x-2﹚²,∴a﹙1-2﹚²=-3,∴a=-3,∴解析式为:y=-3﹙x-2﹚

已知顶点在原点,焦点在x轴上的抛物线过点(1,2),求抛物线的标准方程

顶点在原点,焦点在x轴上的抛物线设为y^2=2px过点(1,2),那么有4=2p*1,p=2即抛物线方程是y^2=4x

已知抛物线当x=2时有最小值-4,且抛物线过点A(3,0),则求该抛物线的解析式?

由题意:抛物线的顶点为(2,-4),设抛物线解析式为y=a(x-2)2-4把A(3,0)代入,得a-4=0,解得a=4,∴抛物线解析式为y=4(x-2)2-4.

已知抛物线y=4/1X+1的图像如图所示.(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴于点B.若

这是2012漳州中考题,原题共三问,本题的解答如下:  江苏吴云超解答 供参考!

已知点A(0,2)和抛物线C:y2=6x,求过A且与抛物线C相切的直线方程

1.抛物线以原点为顶点,而A在y轴上,所以y轴是它的一条切线,即x=02.当切线的斜率存在时,设方程为y=kx+2,把x=y²/6代入得y=ky²/6+2,即ky²-6y