已知抛物线y=x^2-4x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:24:22
(1),因为x1+x2=4,且x1/x2=1/3,解得x1=1,x2=3.则A(1,0)、B(3,0)代入到抛物线方程,解得b=4,c=-3,则抛物线表达式为:y=-x^2+4x-3.(2),抛物线与
这题你就当它是填空题好了,既然让你求值,必是常值,随便取一个特殊位置,最好取抛物线的通径.由于y/4=x/y,所以X1X2/Y1Y2=Y1Y2/16=2(-2)/16=-1/4
y=x²+ax+b=(x+a/2)²+b-a/4顶点是(-a/2,b-a/4),即d(1,4)可知a=-2,b=7/2所以抛物线是y=x²-2x+7/2x=0时,曲线与y
答:抛物线y^2=4x中,x>=0,所以X1取最小值0,Y1=0点A(0,0),B(X2,Y2),C(X3,Y3)Kab=Y2/X2=4/Y2Kac=Y3/X3=4/Y3Kbc=(Y3-Y2)/(X3
互补说明两个倾斜角相加等于180°(两直线与x轴的成角),也就是说两个倾斜锐角相等,所以两条直线的斜率的绝对值相等.设中点为(x0,y0),则y0=(y1+y2)/2,x0=(x1+x2)/2.y1&
设l:x=my+1,与抛物线方程联立消x,可得y1*y2,y1+y2,再可得x1*x2.x1+x2,向量TA·向量TB=1用x1x2y1y2表示可得m,1/m即为斜率
设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy
y=-x²+4x+c=-(x²-4x+4)+c+4=-(x-2)²+(c+4)(1)x2≤2时,y2>y1,x1≥2时,y2
C点x=0,则有y[1]=c;由韦达定理得:x[1]+x[2]=6b,x[1]•x[2]=-6cAM斜率:k[1]=(-(3/2)-0/0-x[1])=(3/2x[1])BC斜率:k[2]
令y=0,有x2+kx+2k-4=0,此一元二次方程根的判别式△=k2-4•(2k-4)=k2-8k+16=(k-4)2,∵无论k为什么实数,(k-4)2≥0,方程x2+kx+2k-4=0都有解,即抛
∵S△ABC=15,即,[(x2-x1)×(AB×OC)/2=15,x2-x1=6,∵a+b+c=0,∴a+c=-b,(a+c)²=(-b)²=b²,[-b±√(b&su
焦点为:(1,0)设AB方程为:y=k(x-1)y1+y2=k(x1+x2)-2k=6k-2k=4ky1^2=4x1,y2^2=4x2y1^2-y2^2=4(x1-x2)(y1-y2)/(x1-x2)
y^2=4xp=4/4=1A到焦点距离即为A到准线的距离,B同理准线方程为x=-1A到准线距离为X1+1B到准线距离为X2+1因此AB=X1+X2+1+1=5
点A和点B关于抛物线的对称轴对称对称轴是x=(x1+x2)/2x1+x2、0,与对称轴等距所以x=x1+x2时,二次函数的值是c原题中c=5吧?
由二次函数的图像的特点,函数图像与x轴交于y轴两侧,且与y轴交于正半轴,所以它开口一定向下,即a<0…………………(1)(如草图)设二次函数图像与x轴的两个交点分别为x1(1<x1<2)、x2=-2那
把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致
(1)由题意得:x1+2x2=0①x1+x2=m−4②x1x2=−2m−4③(m−4)2+4(2m+4)=m2+32>0由①②得:x1=2m-8,x2=-m+4,将x1、x2代入③得:(2m-8)(-
(m^2-4)^2=3*(-x1)*x2=3*[-(m^2-4)](m^2-4)=-3=>m^2=1因为m
y=-x²+4x+cy=-(x-2)²+c-41、当x1