已知数列an,设a1=3,an 1=根号下an2-4an 5 2用数学归纳法证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:51:06
由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a
a(n+1)=3an+1a(n+1)+1/2=3an+3/2=3(an+1/2)[a(n+1)+1/2]/(an+1/2)=3,为定值.a1+1/2=1/2+1/2=1数列{an+1/2}是以1为首项
对于n>1sn=3an+1sn-1=3an-1+1相减an=3(an-an-1)an=3/2*an-1等比数列,公比3/2首项知道,自己写通项了
(Ⅰ)由题意可得数列{an}是首项为1,公比为3的等比数列,故可得an=1×3n-1=3n-1,由求和公式可得Sn=1×(1−3n)1−3=12(3n−1);(Ⅱ)由题意可知b1=a2=3,b3=a1
(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3
(1)在an+1=3an+1中两边加12:an+12=3(an−1+12),…2分可见数列{an+12}是以3为公比,以a1+12=32为首项的等比数列.…4分故an=32×3n−1−12=3n−12
∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于
因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=
此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的
a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+
证明:A(n+1)=Sn+3n+1,则An=S(n-1)+3n-2两式想减得A(n+1)-An=Sn+3n+1-(S(n-1)+3n-2)=An+3即A(n+1)+3=2(An+3)即(A(n+1)+
An=6Sn/(An+3)6Sn=(An)^2+3Ann>=26S(n-1)=(A(n-1))^2+3A(n-1)6An=(An)^2+3An-(A(n-1))^2-3A(n-1)(An)^2-(A(
(Ⅰ)依题意有an+1-1=2an-2且a1-1=2,所以an+1−1an−1=2所以数列{an-1}是等比数列;(Ⅱ)由(Ⅰ)知an-1=(a1-1)2n-1,即an-1=2n,所以an=2n+1而
证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)
(1)∵a1=2,an+1=2an+3.∴an+1+3=2(an+3),a1+3=5∴数列{an+3}是以5为首项,以2为公比的等比数列∴an+3=5•2n−1∴an=5•2n−1−3(2)∵nan=
1、a2=7a3=192、an+1=3an-2所以an+1-1=3(an-1)设bn=an-1则bn+1=3bn得证3、是求证吗?如果是求通项公式,那么由于a1=3,所以b1=2,则bn=2*3^(n
3an+1-3an=2即a(n+1)-an=2/3所以{an}是一个等差数列.故an=a1+(n-1)d=3+(n-1)*2/3所以,a100=3+(100-1)*2/3=69
方法一:A(n+1)-1=3An-3=3(An-1),且A1-1=2,所以数列{An-1}为公比为3,首项为2的等比数列方法二:设A(n+1)+k=3(an+k),即A(n+1)=3An+2k,则2k
a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3
(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/