a b c是圆o上的三点ab,=ac,角abc的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:47:22
a b c是圆o上的三点ab,=ac,角abc的平分线
如图,在三角形ABC中,∠C=90°,AB的中点为O.(1)求证:A、B、C三点在以O为圆心的圆上;(2)若∠ADB=9

直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点

如图,在三角形ABC中,∠C=90°,AB的中点为O,(1)求证:A,B,C三点在以O为圆心的圆上)(2)若∠ADB=9

O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作

在△ABC中,AB=AC,O是AB上一点,以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.点D为BC的中点,连结

1、以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.即BC是圆o的切线,所以OE⊥BC又,AB=AC,点D是BC的中点,所以AD⊥BC所以AD//OE2、∠B=30°,则∠BOE=60°又,O

(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的

连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=

点ABC为圆O上的三点,DE分别是弧AB,AC的中点,连接DE分别交AB.AC于点FG,求证:AF=AG

证明:连接OD、OE∵D、E分别是弧AB,AC的中点∴OD⊥AB,OE⊥AC∵OD=OE∴∠D=∠E∴∠DFB=∠EGC∴∠AFG=∠AGF∴AG=AF

已知O,A,B,是平面上的三点,直线AB上有一点C,满足2向量AB+向量CB=0向量,则向量OC等于?

由向量2AB+CB=0,可知向量AB和CB共线,方向相反,|CB|=2|AB|,B点在AC中间,连结OA、OB、OC,向量OC=OB+BC,向量BC=2AB,向量AB=OB-OA,向量BC=2(OB-

已知:如图,ABC为圆O上的三点,且有弧AB=弧BC=弧CA,连接AB,BC,CA.

(1)∵弧AB=弧BC=弧CA∴∠ACB=∠BAC=∠ABC则∠ACB=∠BAC=∠ABC=π/3∴AB=BC=CA∴△ABC为等边三角形(2)设圆半径为r,连接AO,延长AO交弧BC于点D,连接BD

如图ABC是圆O上的三点 P是劣弧AB上的一个动点 P与点AB不重合,角APC=角CPB=60度

如图∵∠APC=∠CPB=60º,∴弧AC=弧BC,∴AC=BC,∠ACB=60º,因此⊿ABC是等边三角形,∴AB=AC;∠BAC=60º,在PC上截取PD=PA,连接

(2014•河北区三模)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、

(1)证明:连接OD,如图,∵OB=OD,∴∠ODB=∠OBD,∵∠ABC的平分线交AC于点D,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∵∠C=90°,∴∠ADO=90°,∴OD⊥A

(2014•永州三模)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与

连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A

如图,数轴上有A,O,B三点,点O是数轴的原点,点B表示的数是10,AB=18.

(1)∵点B表示的数是10,AB=18,∴A点表示-8;(2)①设经过t秒红蚂蚁与蓝蚂蚁在C点相遇,∵红蚂蚁的速度是每秒12个单位长度,蓝蚂蚁的速度是每秒10个长度单位,∴c+8=12tc=10t,解

已知A,B,C,D是圆O上的点,弧AB=弧AC,角APC=60度,证明三角形ABc为等边三角形

证明:∵∠ABC、∠APC所对应圆弧都为劣弧AC∴∠ABC=∠APC∵∠APC=60∴∠ABC=60∵∠ABC对应劣弧AC、∠ACB对应圆弧AB,弧AB=弧AC∴∠ACB=∠ABC=60∴等边△ABC

A,B,C是球O上的三点,AB=10,AC=6,BC=8,球O的半径等于13,求球心O到平面ABC的距离

AB²+AC²=BC²所以三角形ABC是直角三角形,斜边是BC过ABC的截面,即三角形ABC的外接圆,半径r=BC/2=5所以球心到截面的距离=√(13²-5&

如图△ABC中,角ACB=90°,D为AB上一点,且AD=BD,点A,C在圆O上,且AB是圆O的切线,连接CD求证CD是

连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线

A、B、C 为圆O上的三点,且弧AB=弧BC=弧CD,连接AB,BC,CA,三角形ABC是等边三角形,若AB=a,求圆O

过点O做OD⊥AB,连接OA,OB因为OA=OB,所以D为AB中点,所以AD=a/2,角OAD=30°你应该知道在直角三角形中,若一个角为30°,那么斜边等于短直角边的两倍吧设短直角边为x,斜边就为2

关于 圆 的题已知:在△ABC中,ABC=90°,AB=4,BC=3.O是边AC上的一个动点,以点O为圆心做半圆,与边A

图在这里:1.EP⊥ED,以点O为圆心做半圆,与边AB相切于点D所以角ADO=角DEP=90度而圆O中,有OD=OE所以角ODE=角OED所以组合成有角ADE=角AEP又因为角A是公共角所以△ADE∽

如图所示,圆O的半径为1,A,B,C是圆周上的三点,满足∠ABC=30°,过点A做圆O的切线

2.连结OA,则角OAP=90度,角AOC=2角ABC=60度,角P=30度,OP=2OA=2.

j已知AB是半径为1的圆O的一条弦,且AB=a小于1,以AB为一边在圆O内作正三角行ABC,D为圆O上不同于点A的一点,

答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的

AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的点,若AB=2,PA=根号3,角ABC=30,则二面

根据直径所对的圆周角是直角,得到角ACB=90,又角ABC=30且AB=2,所以AC=1,BC=根号3.再求PC=2,PB=根号7.所以有PC^2+BC^2=PB^2,推出角PCB=90.则角ACB就