a b c是圆o上的三点ab,=ac,角abc的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:47:22
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作
1、以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.即BC是圆o的切线,所以OE⊥BC又,AB=AC,点D是BC的中点,所以AD⊥BC所以AD//OE2、∠B=30°,则∠BOE=60°又,O
连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=
证明:连接OD、OE∵D、E分别是弧AB,AC的中点∴OD⊥AB,OE⊥AC∵OD=OE∴∠D=∠E∴∠DFB=∠EGC∴∠AFG=∠AGF∴AG=AF
由向量2AB+CB=0,可知向量AB和CB共线,方向相反,|CB|=2|AB|,B点在AC中间,连结OA、OB、OC,向量OC=OB+BC,向量BC=2AB,向量AB=OB-OA,向量BC=2(OB-
(1)∵弧AB=弧BC=弧CA∴∠ACB=∠BAC=∠ABC则∠ACB=∠BAC=∠ABC=π/3∴AB=BC=CA∴△ABC为等边三角形(2)设圆半径为r,连接AO,延长AO交弧BC于点D,连接BD
如图∵∠APC=∠CPB=60º,∴弧AC=弧BC,∴AC=BC,∠ACB=60º,因此⊿ABC是等边三角形,∴AB=AC;∠BAC=60º,在PC上截取PD=PA,连接
(1)证明:连接OD,如图,∵OB=OD,∴∠ODB=∠OBD,∵∠ABC的平分线交AC于点D,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∵∠C=90°,∴∠ADO=90°,∴OD⊥A
连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A
(1)∵点B表示的数是10,AB=18,∴A点表示-8;(2)①设经过t秒红蚂蚁与蓝蚂蚁在C点相遇,∵红蚂蚁的速度是每秒12个单位长度,蓝蚂蚁的速度是每秒10个长度单位,∴c+8=12tc=10t,解
证明:∵∠ABC、∠APC所对应圆弧都为劣弧AC∴∠ABC=∠APC∵∠APC=60∴∠ABC=60∵∠ABC对应劣弧AC、∠ACB对应圆弧AB,弧AB=弧AC∴∠ACB=∠ABC=60∴等边△ABC
AB²+AC²=BC²所以三角形ABC是直角三角形,斜边是BC过ABC的截面,即三角形ABC的外接圆,半径r=BC/2=5所以球心到截面的距离=√(13²-5&
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
1)连接OB,AB//OC=
过点O做OD⊥AB,连接OA,OB因为OA=OB,所以D为AB中点,所以AD=a/2,角OAD=30°你应该知道在直角三角形中,若一个角为30°,那么斜边等于短直角边的两倍吧设短直角边为x,斜边就为2
图在这里:1.EP⊥ED,以点O为圆心做半圆,与边AB相切于点D所以角ADO=角DEP=90度而圆O中,有OD=OE所以角ODE=角OED所以组合成有角ADE=角AEP又因为角A是公共角所以△ADE∽
2.连结OA,则角OAP=90度,角AOC=2角ABC=60度,角P=30度,OP=2OA=2.
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
根据直径所对的圆周角是直角,得到角ACB=90,又角ABC=30且AB=2,所以AC=1,BC=根号3.再求PC=2,PB=根号7.所以有PC^2+BC^2=PB^2,推出角PCB=90.则角ACB就