已知数列an成等比数列,(1)若a5=4,a7=6求a12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:10:38
已知数列an成等比数列,(1)若a5=4,a7=6求a12
已知等差数列{an}中 a1=1 公差d>0 且a2 a5 a14 成等比数列 求数列{an}的通项公式 设数列{an}

设公差为d则有(1+d)*(1+13d)=(1+4d)(1+4d)推出d=2;所以an=1+2(n-1);Sn=n*n

在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an

a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-

已知数列an是等差数列,公差d≠0,切a1,a3,a4成等比数列,(1)求a5的值

a1,a3,a4成等比数列所以(a1+2d)^2=a1*(a1+3d)a1^2+4d*a1+4d^2=a1^2+3d*a1所以d*a1=-4d^2因为d≠0所以:a1=-4da5=a1+4d=0

已知公差不为0的等差数列{an},a1=1且a2,a4-2,a6成等比数列 求数列{...

a2=a1+da4=a1+3da6=a1+5da2,a4-2,a6成等【比】数列(a1+3d-2)^2=(a1+d)(a1+5d)(3d-1)^2=(1+d)(1+5d)9d^2-6d+1=5d^2+

已知数列an是等比数列,且a1=1,a4=-27,求数列an的通项公式

等比数列的基本公式:An=A1*q^(n-1),q是公比,n是第n项.a4=a1*q^(4-1)→27=1*q^3→q^3=27→q=27^1/3=3,所以an=3^(n-1)就是an的通项公式

已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列

1.bn=(3an-2)/(an-1)an=(bn-2)/(bn-3)a(n+1)=[b(n+1)-2]/[b(n+1)-3]a(n+1)=(4an-2)/(3an-1)3a(n+1)an-a(n+1

已知数列an是等比数列,且a1,a2,a4成等差数列,求数列an的公比

a1*p=a2a1*p^3=a4,a1*p-a1=a1*p^3-a1*Pp-1=p^(p^2-1);(p-1)(p*(p+1)-1)=0,p=1,或p^2+p-1=0,p=(-1+√5)/2,p=(-

已知数列{An}是等比数列,且a1,a2,a4,成等差数列,求数列{An}的公比

a1,a2,a4成等差数列2a2=a1+a4即2a1*q=a1+a1q^3a1不为0所以:2q=1+q^3q^3-2q+1=0q^3-q^2+q^2-2q+1=0q^2*(q-1)+(q-1)^2=0

已知数列{an}是等比数列 且a1,a2,a4成等差数列 求数列{an}的公比

a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1

已知An是等比数列,且a1,a2,a4成等差数列,求数列{an}公比

a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1

一道数列题.已知等比数列{an}中,a2=32,a8=12,an+1

an=32*(3/8开6次方的n-2次方)Tn=log(2^n*a1*a2...an)问题转化为求a1*a2*...*an的值S=32^n*(3/8的n(n-2)/6次)所以Tn=log(64^n*(

已知数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.

(1)将a4+a4q^2=2*(a4q+1)与a4q^3=1联立,得q=1/2,a4=8,所以an=64q^(n-1)(n>=1,n∈R+)(2)Sn=64[1-(1/2)^n]/(1-1/2)=12

已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列

1.证明:因为bn,a(n+1),b(n+1)成等比数列,所以[a(n+1)]²=bnxb(n+1)(n∈N*)a(n+1)=√[bnxb(n+1)]所以an=√[bnxb(n-1)](n≥

已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是等比数列,并求{a

a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an[a(n+2)-a(n+1)]/[a(n+1)-2an]=2∴数列{an+1-an}是等比数列a(n+1)-an=

已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an

a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n

已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)

(1)a4、a5+1、a6成等差数列,则2(a5+1)=a4+a6a4=a3qa5=a3q²a6=a3q³a3=1代入,整理,得q³-2q²+q-2=0q

已知数列an是等比数列,其中a7=1,且a4,a5+1,a6成等差数列

a7=aq^6=1aq^4=1/q^2aq^3=1/q^3aq^5=1/qa4,a5+1,a6成等差数列2(a*q^4+1)=a*q^3+a*q^52a*q^4+2=a*q^3+a*q^52/q^2+

数列练习题已知数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列,(1)求数列{an}的通向公式(2

a7=aq^6=1aq^4=1/q^2aq^3=1/q^3aq^5=1/qa4,a5+1,a6成等差数列2(a*q^4+1)=a*q^3+a*q^52a*q^4+2=a*q^3+a*q^52/q^2+

已知数列{an}是首项为2的等差数列,a1,a2,a4成等比数列.求数列{an}的通项公式

a2=a1+da4=a1+3da2^2=a1a4a2^2=(a1+d)^2=a1^2+2a1d+d^2a1a4=a1(a1+3d)=a1^2+3a1da1^2+2a1d+d^2=a1^2+3a1da1