已知数列an满足lgan等于2n加1,试an是等比数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:19:20
an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n
lgA(n+1)-lgAn=q(q为常数)lgA(n+1)/An=dqA(n+1)/An=10^q所以{An}是等比数列
取数列{lgan}中的任意两项lgan和lga(n-1),那么必定有lgan-lga(n-1)=k=常数所以有lg[an/a(n-1)]=k那么an/a(n-1)=e^k所以数列{an}中的任意两项a
由题意可得,an+1-an=-1,此等差数列是以2为首项,以-1为公差的等差数列,则此数列的通项an=2+(n-1)d=3-n,故选D.
lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助
a(n+1)/an=10∧[(3n+8)-(3n+5)]=10∧3再问:那为什么a(n-1)=10^(3n+2)回答这个之后马上好评求解!!再问:或者a(n+1)=10^(3n+8)再问:懂了!!
a1=2,an=3a(n-1)(n大于等于2)∴an/a(n-1)=3那么{an}为等比数列,公比q为3∴an=a1*q^(n-1)an=2*3^(n-1)
等于2,规律就是6个以后就是反复了.
因为数列an是等比数列,所以可设an=2*q^(n-1)于是a4=2*q^3=16所以q=2所以an=2^n所以bn=lgan=lg2^n=nlg2于是bn-b(n-1)=nlg2-(n-1)lg2=
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
n=1/n*(lga1+lga2+.lgan+lgk)=1/n*(n+lgk)
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
是等比数列.再问:怎么做?要过程再答:由题可设lgan+1-lgan=d则lg(an+1/an)=d(这是对数常用公式)所以(an+1)/an=10^d又因为d是常数,所以10^d是常数。而且an不等
因为lga(n+1)=lgan+lgc所以lga(n+1)-lgan=lgc所以lg[a(n+1)/an]=lgc所以a(n+1)/an=c所以{an}为等比数列若c=1则Sn=3n若c1则Sn=3(
A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2
{lgan}是首项为3公差为2lgan=3+2(n-1)=2n+1an=10^(2n+1)a1=10^3=1000q=10所以an为首项为1000公比为10的等比数列
若数列{lgan}为等差数列,可得:2lgan=lgan-1+lgan+1,即lgan2=lg(an-1•an+1),∴an2=an-1•an+1,∴数列{an}为等比数列;但数列{an}为等比数列,