已知数列an的前n项和为sn a1 1an 1=1 2sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:22:45
已知数列an的前n项和为sn a1 1an 1=1 2sn
已知数列{an}的前n项和为Sn=10n-n2.

(1)当n=1时,a1=S1=9,当n≥2时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n,当n=1时,a1=9,满足an=11-2n,所以an=11-2n,n∈N

已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列

因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易

已知数列{an}的前n项和的公式为Sn=32n-n2,求数列{|an|}的前n项和Sn′.

当n=1时,a1=S1=32-1=31.当n≥2时,an=Sn-Sn-1=32n-n2-[32(n-1)-(n-1)2]=33-2n.当n=1时,上式也成立.∴an=33-2n.令an≥0,解得n≤3

已知数列{an}前n项的和为Sn=2an-1 求

S(n-1)=2a(n-1)-1所以Sn-S(n-1)=2an-2a(n-1)因为Sn-S(n-1)=an所以an=2an-2a(n-1)所以an=2a(n-1)an/[a(n-1]=2所以an是等比

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a

已知数列{an}的通项为an=n,前n项和为Sn,求数列{1/Sn}的前n项和Tn的表达式

Sn=(n^2+n)/21/Sn=1/((n2+n)/2)=2/(n^2+n)Tn=1+2/6+2/12+2/30+.+2/n*(n+1)=1+(2/2-2/3)+(2/3+2/4)+.+(2/n-2

已知数列{an}的前n项和Sn=12n-n^2,求an绝对值的数列的前n项和为多少

Sn=12-n²an=Sn-S(n-1)=13-2n是递减数列令an6.5,即前6项为正,以后为负!故前n项和如下:(1)n≤6时Sn=12n-n²(2)n≥7时|a1+|a2|+|a

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{

数学试题:已知数列{an}前n项和为Sn

S1=a1=1-1*a12a1=1a1=1/2S2=1-2a2=a1+a2=1/2+a23a2=1/2a2=1/6Sn=1-nanSn-1=1-(n-1)a(n-1)相减an=Sn-Sn-1=1-na

已知数列{an}的前n项和为sn=32n减去n的平方,求数列{|an|}的前n项和?

an=sn-s(n-1)=32n-n^2-32(n-1)+(n-1)^2=33-2n因此,当n>16时an

已知数列an的前n项和为sn=n^2-25n,求数列|an|的前n项和Tn

an=Sn-Sn-1=n^2-25n-((n-1)^2-25(n-1))=2n-26a1=-24n12Tn=-S12+(Sn-S12)=Sn-2S12

已知数列 an的前 n项和为Sn=n-5an-85 ,且n属于N* ,(1

S[n]=n-5a[n]-85其中:为了表示清楚,[n]表示下标,S[n-1]=n-1-5a[n-1]-85两式相减:a[n]=1+5(a[n-1]-a[n])a[n]-1=5(a[n-1]-1)-5

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列(an)通项公式an=(6n)-5(n为偶数)an=4^n(n为奇数),求(an)的前n项和

令b[n]=a[2n],c[n]=a[2n+1]b[n],c[n]均是等差数列直接用求和公式再反带回去

已知数列an的前n项和公式为Sn=kq^n-k,求证数列an为等比数列

∵Sn=kq^n-k∴S(n+1)=kq^(n+1)-k∴a(n+1)=S(n+1)-Sn=[kq^(n+1)-k]-(kq^n-k)=k[q^(n+1)-q^n]=k[(q-1)q^na(n+1)/

已知数列{an}的前n项和为Sn=1/3(an-1)

Sn=1/3(an-1)Sn-1=1/3(an-1-1)Sn-Sn-1=1/3(an-an-1)即an=1/3(an-an-1)然后应该会了吧,可惜我用电脑不如手写的灵活,看看会了吗

已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列

当n=1时,a1=S1=1当n≥2时,an=Sn-S(n-1)=3n²-2n-3(n-1)²+2(n-1)=6n-5∵当n=1时,满足an=6n-5又∵an-a(n-1)=6n-5

已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an

an-a(n+1)=ana(n+1)【两边同除以ana(n+1)】得:1/[a(n+1)]-1/[a(n)]=1即:数列{1/(an)}是以1/a1=1为首项、以d=1为公差的等差数列.则:1/[a(

一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An

Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]