已知数列an的前n项和为sn 且sn 2的n次方减一,数列bn满足b1=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:05:00
已知数列an的前n项和为sn 且sn 2的n次方减一,数列bn满足b1=2
已知数列{an}前n项和为Sn,且Sn=-2an+3

1.Sn=-2an+3有S(n-1)=-2a(n-1)+3则an=Sn-S(n-1)=-2an+2a(n-1)=>an=a(n-1)*2/3所以,{an}为共比数列,q=2/32.Sn=-2an+3有

已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an

n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n属于正整数

a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5

已知数列an的前n项和为sn,且a1=1,an+1=1/2sn

1.a(n+1)=sn/2,a(n+2)=s(n+1)/2,后式减前式得:a(n+2)-a(n+1)=a(n+1)/2,a(n+2)/a(n+1)=3/2,数列a(n+1)为公比q=3/2,首项a2=

已知数列{an}的前n项和为Sn,且a1=1,an+1=1/2Sn.

∵a(n+1)=1/2Sn.∴n≥2时,an=1/2S(n-1)∴a(n+1)-an=1/2[Sn-S(n-1)]=1/2an∴a(n+1)=3/2an∴a(n+1)/an=3/2∵a1=1,∴a2=

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a

已知数列{An}的前n项和为Sn,且Sn=n²+n(n∈N*)

1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-

已知数列An的前N项和为Sn,且Sn等于1/3(An-1)

A1=S1=1/3(A1-1)3A1=A1-1A1=-1/2S2=A1+A2=1/3(A2-1)-3/2+3A2=A2-1A2=-1/4再问:求证数列an为等比数列再答:Sn-S(n-1)=an所以1

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*

(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{

已知数列{an}的前n项和为Sn,且点(a

∵点(an,Sn)在直线2x-y-3=0上,∴2an-Sn=3,①∴2an-1-Sn-1=3(n≥2)②①-②得:2(an-an-1)=Sn-Sn-1=an,∴an=2an-1(n≥2)又2a1-a1

已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列

Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n

已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an

因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2

已知数列{an}的前n项和为Sn,且Sn=23an+1(n∈N*);

(Ⅰ)a1=3,当n≥2时,Sn−1=23an−1+1,∴n≥2时,an=Sn−Sn−1=23an−23an−1,∴n≥2时,anan−1=−2∴数列an是首项为a1=3,公比为q=-2的等比数列,∴

已知数列{an}的前n项和为Sn,且2Sn=n²+n

2Sn=n²+n则n≥2时2S(n-1)=(n-1)²+(n-1)=n²-n相减2an=2nan=n2a1=2S1=1+1=2a1=1符合n≥2的式子所以an=n

已知数列 an的前 n项和为Sn=n-5an-85 ,且n属于N* ,(1

S[n]=n-5a[n]-85其中:为了表示清楚,[n]表示下标,S[n-1]=n-1-5a[n-1]-85两式相减:a[n]=1+5(a[n-1]-a[n])a[n]-1=5(a[n-1]-1)-5

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列{an}的前n项和为Sn,且S

由Sn=13(an−1)可知Sn−1=13(an−1−1),两式相减可得,an=13(an−an−1),即anan−1=−12,(n≥2)故数列数列{an}为等比数列.公比q=−12. 又a