已知数列bn是等比数列且b1 b2 b3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:48:10
已知数列bn是等比数列且b1 b2 b3
已知数列{an}是等差数列,数列{bn}是等比数列,a1=b1=1,若cn=an+bn,且c2=6,c3=11,求数列{

设数列{an}、{bn}的公差、公比分别为d、q,由c2=6c3=11得(1+d)+q=6(1+2d)+q2=11,消去d得q2-2q=0,∵q≠0,∴q=2,∴d=3,∴an=3n-2,bn=2n-

已知数列{an}是等差数列,且a1=1,公差为2,数列{bn}为等比数列且b1=a1,b2(a2-a1)=b1

a(n)=2n-1b1=12b2=b1公比为1/2b(n)=1/2^(n-1)Cn=(2n-1)*2^(n-1)Sn=1+3*2^1+5*2^2+.+(2n-1)*2^(n-1)2Sn=2+3*2^2

已知数列{an}为等差数列,且a1=2,a1+a2+a3=12,令bn=3^an,求证,数列{bn}是等比数列

设公差值为ca1+a2+a3=a1+(a1+c)+(a1+c+c)=3a1+3c=12c=2an=a1+c(n-1)=2nbn=3^(2n)b(n+1)/bn=3^(2n+2)/3^2n=9所以bn是

已知数列{bn}是等差数列,a>0,求证数列{an的b次方}是等比数列

an^bn/an^b(n-1)=an^[bn-b(n-1)]=an^d,这是个常数,所以是等比数列bn-b(n-1)=d再问:d是什么再答:公差啦,高二数学书丽有的再答:采纳我吧,3q了

数列的一道题已知正整数数列{an}是等比数列,首项为10,又bn=lg(an),若数列{bn}的前7项和S7最大,且S7

Sn=b1+b2+……+bn=lg(a1)+lg(a2)+……+lg(an)=lg(a1*a2*……*an)=lg{10^n*q^[n(n-1)/2]}=lg(10^n)+lg{q^[n(n-1)/2

帮忙解数学题(高二)已知{an}是等差数列,且bn=2^an,求证:数列{bn}是等比数列 有四个数,前三个数程等差数列

(n)=2^a(n)b(n+1)=2^a(n+1)b(n+1)/b(n)=2得证把这四个数设为a-d,a,a+d,[(a+d)^2]/a或设为(2a/q)-a,a/q,a,aq然后依据条件列方程,解出

已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数

1.bn/b(n-1)=3[an-a(n-1)]=q所以an-a(n-1)=log(3)q2.a2=13a8=1d=-2an=17-2n3.n8Tn=-[a1+.an]+2[a1+.+a8=n^2-1

已知等比数列{an},Sn是其前n项和,且a1+a3=5,S4=15,设bn=(5/2)+log2(an),求数列{bn

S4=a1+a2+a3+a4=a1+a3+q(a1+a3)=155+5q=15q=2a1+a3=5a1+aq^2=5a1+4a1=5a1=1an=a1q^n-1=2^n-1b1=5/2b2=5/2+1

已知数列an是等差数列,bn是等比数列

a1+a2=a3=b2+b3有问题,是不是a1+a2+a3=b2+b3

已知数列an是等差数列,数列bn是等比数列,其公比q≠1,且bi>0

a5=(a2+a8)/2=(b2+b8)/2;b5=根号(b2*b8);由基本不等式根号ab==b5q≠1,bi>0a5>b5B

已知数列{an}是正项等比数列,{bn}是等差数列,且a6=b7,则一定有(  )

∵an=a1q(n-1),bn=b1+(n-1)d,∵a6=b7∴a1q5=b1+6da3+a9=a1q2+a1q8b4+b10=2(b1+6d)=2b7=2a6a3+a9-2a6=a1q2+a1q8

已知数列{an}是等差数列,a1=1,公差为2,又已知数列{bn}为等比数列,且b1=a1,b2(a2-a1)=b1,求

1.a1=1,a2=3,所以an=2n-1b1=1,b2=0.5,所以an=(0.5)^(n-1)=2^(1-n)2.Cn=an/bn=(2n-1)*2^(n-1)Sn=1*2^0+3*2^1+5*2

已知数列{an}是等比数列,数列{bn}是等差数列,且b1=a1,b3=a2,b7=a3,求数列{an}的公比

设an=a*q^(n-1)因为b1=a1,则可设bn=a+(n-1)*d由b3=a2得a+2d=aq由b7=a3得a+6d=aq^2(aq-a)/2=(aq^2-a)/63q-3=q^2-1q^2-3

已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)

(1)a4、a5+1、a6成等差数列,则2(a5+1)=a4+a6a4=a3qa5=a3q²a6=a3q³a3=1代入,整理,得q³-2q²+q-2=0q

已知数列{an}是等差数列,且bn=2的an次方,求证数列{bn}是等比数列

∵数列{an}是等差数列,∴an-a(n-1)=d∵bn/b(n-1)=2^an/[2^a(n-1)]=2^[an-a(n-1)]=2^d∴{bn}是等比数列,公比为2^d

已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn

n=b1.q^(n-1)bn=an-3nan=bn+3n=b1.q^(n-1)+3nSn=a1+a2+...+an=b1(q^n-1)/(q-1)+3n(n+1)/2