高中数列难题求解!已知数列[an],[bn]分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3不=b4.(1
高中数列难题求解!已知数列[an],[bn]分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3不=b4.(1
已知数列an是等差数列,bn是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3,求数
已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.
设数列an是等差数列,bn为等比数列,若a1=b1=1,a2+a4=b3,b2×b4=a3,求数列an,bn的通项公式
高三数列题:已知数列an是递增等差数列,bn是等比数列,且a1=1,b1=2,a4=b2,a8=b3↓
已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4
已知等差数列{an}的公差d不等于0,数列{bn}是等比数列,a1=b1=1,a2=b2,a4=b4
{an}{ bn}分别为等差数列与等比数列且a1=b1=4,a4=b4=1 A.a2大于b2 B.a3小于b3
已知等差数列{an}的首项a1=1,公差d>0,数列{bn}是等比数列,且a2=b2,a5=b3,a14=b4
在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3不等于b4.
已知数列an是等差数列,bn是等比数列,且a1=b2=2,b4=54,a1+a2+a3=b2+b3