已知数列{an}的首项a1=1 2,且满足2 an 1=2 an 5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:20:28
数列an是等差数列,设公差为da4=-27a1+3d=-271+3d=-27d=-28/3an=a1+(n-1)d=1+(n-1)(-28/3)=(31-28n)/3
an+1=an+2n推出an=an-1+2(n-1)...a2=a1+2累加得an=a1+2(2+3+4+...n-1)an=2+n(n-1)an=n^2-n+2(n>=1)
a1=2a1+a2+a3=12a2=4d=2an=2nbn=3^an=3^2n=9^n数列bn是以9为首项,公比=9的等比数列Sn=9(1-9^n)/(1-9)=(9^[n+1]-9)/8
a1=2,a1+a2+a3=12a2=4d=2an=2n2.Sn=2*3+4*3^2+6*3^3+……+2n*3^n3Sn=2*3^2+4*3^3+……+(2n-2)*3^n+2n*3^[n+1]相减
a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1
等比数列的基本公式:An=A1*q^(n-1),q是公比,n是第n项.a4=a1*q^(4-1)→27=1*q^3→q^3=27→q=27^1/3=3,所以an=3^(n-1)就是an的通项公式
如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..
n≥2时,a[n]=S[n]-S[n-1]=2a[n+1]+1-2a[n]-1∴3a[n]=2a[n+1]即:a[n+1]/a[n]=3/2∴当n≥2时数列{a[n]}是公比为3/2的等比数列∵a[1
试了前面几个,an是单调递增的,而函数cos在区间(0,90°)是递减函数,所以这个假设肯定是错误的理解错了,θn我以为是相乘,原来是尾标2cosθ(n+1)=根号(2+2cos(θn))=2cos(
此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的
n>=2:an+1=2(a1+a2+a3.+an)=2Sn所以Sn=1/2an+1an=...=2Sn-1.Sn-1=1/2an.Sn-Sn-1=an=1/2an+1-1/2an所以an+1=3an等
∵an+1=2anan+2,∴1an+1=an+22an=12+1an,即1an+1-1an=12,∴数列{1an}是等差数列,公差d=12,首项12,∴1an=12+12(n-1)=n2,即an=2
a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n
要证明的结论有问题吧,应该是证明“对任意的x>0,an≥1/(1+x)-1/(1+x)²*[2/(3^n+2)+x],n=1,2,……”吧?证明:a(n+1)=3a(n)/[2a(n)+1]
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
a(n+1)*(1-an)=ana(n+1)=an/(1-an)1/a(n+1)=(1/an)-11/a(n+1)-1/an=-1{1/an}是以公差为-1的等差数列1/an=-1+(n-1)*(-1
(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/
a(n+1)/a=3^n所以an/a(n-1)=3^(n-1)a(n-1)/a^(n-2)=3^(n-2)……a2/a1=3^1相乘an/a1=3^1*3^2*……*3^(n-1)=3^[1+2+……
a1=10an=9*10的n-1次方
a(n+1)=3Snan=Sn-S(n-1)3an=3Sn-3S(n-1)=a(n+1)-ana(n+1)=4an{an}是以a1为首项,4为公比的等比数列an=4^(n-1)