已知正方形abcd,e为bc的中点,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:18:27
已知正方形abcd,e为bc的中点,
如图所示,四边形ABCD是一个正方形.E,F分别为CD和BC边上的中点.已知正方形ABCD的边长是30厘米,那

设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿

已知正方形ABCD,E,F分别为AB,BC的中点,求阴影部分的面积.(图即画一个正方形,A在左上角,B在左下角,C在右下

取DC边的中点G联结EG设EG与DF的交点为H设正方形的边长为1(你没给出边长是多少,我只好设一个)因为F是BC的中点FC=1/2BC=1/2因为E.G两点为AB和DC的中点所以EG平行于BC则HG=

如图,已知正方形ABCD的边长为1,E,F分别为AD,BC的中点,把正方形沿对角线AC折起直二面角,

过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF&#

已知ABCD是边长为6的正方形.E、F为DC、BC的中点.求四边形ABGD的面积.

连CG.有向个同底等高的三角形呢.以下直接用字母表示相应图形的面积有DEG=CGE=CGF=GFBADGB=ADCB-ECB-DEG=6*6-3*6/2-(3*6/2)/3=24

已知正方形ABCD的边长为4,E为BC边上一点,且BE=1,P为AC上一点,求PE+PB的最小值

画出图,连接DE,交AC于P,只有P在此位置时最,PE+PB=DE利用三角形两边之和大于第三边即可证明其长度为5利用全等三角形即可证明PB=PDPE+PB=PD+PE=DEDE是直角三角形DCE的斜边

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

已知正方形ABCD的面积为1平方厘米,E为BC的中点,求阴影部分的面积

因为AD平行DE,所以DE/AD=1/2=EF/AF=BF/DF,(底在同一直线,三角形面积比等于高的比),三角形ABF的面积=2/3三角形ABE的面=2/3*1/2*1/2=1/6,同理,三角形DF

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

已知正方形ABCD中,E是BC上一点,DE=2,CE=1,则正方形ABCD的面积为(  )

如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.

如图所示,在正方形ABCD中,E为BC的中点,F为AB上的一点,且BF=4分之1 AB.已知正方形ABCD的面积为16

如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

已知正方形abcd的边长为1 e为ab上一点f为bc上一点三角形bef的周长为2则角edf为多少度

因为AE+BE+BF+CF=2且BE+BF+EF=2所以AE+CF=EF以点D为中心,将三角形DFC顺时针旋转90度,至三角形DQA,所以DF=DQ,角FDC等于角QDA,QAEB共线所以AE+CF=

已知正方形ABCD的面积为160cm2,E、F分别为边BC、DC的中点,求阴影三角形的面积.

E、F分别为边BC、DC的中点,所以三角形ADF和三角形ABE的面积都等于正方形的面积的14,三角形EFC的面积是正方形的面积的18,则阴影部分的面积是正方形的面积的1-14-14-18=38,160

已知E F分别为正方形ABCD边BC CD上的点 且△AEF为等边三角形,若正方形的边长为1,求EF的长

∵AE=AF;AB=AD.∴Rt⊿ABE≌Rt⊿ADF(HL),BE=DF.∴CE=CF,设CE=CF=X,则BE=1-X;AE=EF=√2X.∵AB^2+BE^2=AE^2,即1^2+(1-X)^2

已知:如图所示,在正方形ABCD中,F为DC的中点,E为BC的中点,且EC=四分之一BC.求证:AF垂直EF

因为四边形ABCD为正方形,所以AD=DC=BC角D=角C=90°又因为F的CD中点,所以CF/AD=1/2因为EC=四分之一BC所以EC/DF=1/2根据两边夹一角的定理△ADF∽△FCE所以角DF

已知正方形ABCD的面积为160平方厘米,E,F分别为边BC,DC的重点,求阴影三角形的面积.

SΔADF=SΔABE=S正方形ABCD÷4=40,SΔCEF=S正方形ABCD÷8=20,∴SAEF=160-2×40-20=60平方厘米.