已知正方形abcd中点e在bc上连接ae过点b作bf垂直于ae于点g

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:01:00
已知正方形abcd中点e在bc上连接ae过点b作bf垂直于ae于点g
已知正方形ABCD,E,F分别为AB,BC的中点,求阴影部分的面积.(图即画一个正方形,A在左上角,B在左下角,C在右下

取DC边的中点G联结EG设EG与DF的交点为H设正方形的边长为1(你没给出边长是多少,我只好设一个)因为F是BC的中点FC=1/2BC=1/2因为E.G两点为AB和DC的中点所以EG平行于BC则HG=

正方形ABCD,点E为BC中点,点F在CD上

解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三

已知:如图,正方形abcd中,e是bc的中点,点f在cd上,角fae=角bae 求证:af=

证明:从C点作AF的垂线交AF于G在三角形ABE和三角形AGE中:角FAE=角BAE角B=角AGE=pi/2AE=AE所以三角形ABE和三角形AGE全等所以AG=AB=BCGE=BE=CE又角C=角E

已知在正方形ABCD中,E为BC的中点,F在AB上,BF=1/2BE,求证∠FED=90°

角B=角C,同时CD/BE=CE/BF所以△DCE∽△EBF可知角CED=角BFE=90度-角BEF即角CED+角BEF=90度所以∠FED=90°

如图所示,已知E是正方形ABCD 的边CD的中点,点F在BC上,且角 DAE=角FAE,求证:AF=AD+CF

证明:延长AE交BC的延长线于点G∵AD∥BC∴∠DAE=∠G,∠D=∠GCE∵E是CD的中点∴DE=CE∴△ADE≌△GCE(AAS)∴CG=AD∴FG=CG+CF=AD+CF∵∠DAE=∠FAE∴

已知在正方形ABCD中,E为BC中点,F在AB上,BF为BE的一半,证明角FED=90度

连接DF,设正方形边长为4,则BF=1,BE=EC=2,AF=3,CD=AD=4利用勾股定理得:EF=√5,DE=√20,DF=5∴EF的平方+DE的平方=DF的平方用勾股定理逆定理知:角FED=90

如图,已知正方形ABCD中,E为BC的中点,F在AB上,BF=1/2BE,试说明角FED=90度

用勾股定理和逆定理:设AB=4,则BE=EC=2,BF=1,AF=3用勾股定理可求:EF=√5,DE=√20,DF=5故EF的平方+DE的平方=DF的平方∴角FED=90度

已知:正方形ABCD中,E为BC的中点,F点在DC上且CF=1/4DC,求证:AE⊥EF

连接AF;设正方形边长为4a;AB=BC=CD=AD=4aE为BC的中点;∴BE=EC=2a;CF=1/4CD=a;DF=4a-a=3a;AE^2=AB^2+BE^2=(4a)^2+(2a)^2=20

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

已知:在正方形ABCD中,E是BC的中点,F是AC、DE的交点,求证:AE⊥BF.

不用作辅助线.∵四边形ABCD是正方形,∴∠ADC=∠ABC,BC=CD,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,,∵E是BC中点,∴BE=CE,∵AB=DC,∠ABC=∠ACD.∴

如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF

过E做EG⊥AF于G,连接EF∵ABCD是正方形∴∠D=∠C=90°AD=DC∵∠DAE=∠FAE,ED⊥AD,EG⊥AF∴DE=EGAD=AG∵E是DC的中点∴DE=EC=EG∵EF=EF∴Rt△E

已知:E是正方形ABCD的中点(DC的中点),点F在BC上,且AE平分∠DAF,求证:AF=AD+CF

过E作EG垂直与AF.AE平分角DAF(已知)ED垂直AD,EG垂直AF可得:DE=EG(角平分线上的点到角两边的距离相等),易证AD=AG.因为E是中点,所以DE=EC=EG连接EF.在直角三角形E

已知E是正方形ABCD的边CD的中点,点B在BC上,且角DAE等于角FAE,求证:AF=AD-CF

应该是点F在BC吧,证明已知E是正方形ABCD的边CD的中点,证明:AF=AD+CF吧已知:ABCD是正方形,点E是边CD的中点,∠DAE=∠FAE做辅助线EG垂直于AF,点G在AF上,则EG是△AE

已知:如图,正方形ABCD中,E是BC的中点,点F在CD上,角FAE等于角BAE,求证,AF=BC+EC

做EG⊥AF于G,连接EF∵∠ABE=∠AGE=90°,∠FAE=∠BAEAE=AE∴△ABE≌△AGE(AAS)∴AG=AB=BCBE=EG∵E是BC中点,那么BE=CE=EGEF=EF∴RT△EF

如图,已知E是正方形ABCD的边BC的中点,点F在边CD上,且∠BAE=∠FAE,

证明:过E点作EG⊥AF,垂足为G,∵∠BAE=∠EAF,∠B=∠AGE=90°,又∵∠BAE=∠EAF,即AE为角平分线,EB⊥AB,EG⊥AG,∴BE=EG,在Rt△ABE和Rt△AGE中,BE=

已知:如图,在正方形ABCD中,E为BC中点,F为CD上一点,AE平分∠BAF.

证明:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.∴EM=AM=12AF∵EM=12(AB+CF),∴AF=AB+CF.

在正方形ABCD中,已知AB等于2,E是BC的中点,DF垂直与AE于点F,

第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5

已知:在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE,求证:AF=BC+FC

证明:延长AE,DC交于点G,因为在正方形ABCD中,AB∥CD所以∠B=∠ECG,∠BAE=∠CGE又E是BC的中点,所以BE=CE所以△ABE≌△GCE所以AB=CG,在正方形ABCD中,AB=B

已知:如图所示,在正方形ABCD中,F为DC的中点,E为BC的中点,且EC=四分之一BC.求证:AF垂直EF

因为四边形ABCD为正方形,所以AD=DC=BC角D=角C=90°又因为F的CD中点,所以CF/AD=1/2因为EC=四分之一BC所以EC/DF=1/2根据两边夹一角的定理△ADF∽△FCE所以角DF