a b为圆o中非直径的弦,角cab等于角b,求证,ef为圆o的切线,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:50:44
a b为圆o中非直径的弦,角cab等于角b,求证,ef为圆o的切线,
如图,AB是圆O的直径,CA切圆O于A.连结CB交圆O于E,F为AC中点,求证:EF是圆O的切线.

连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线

已知,AB为圆O的直径,CA垂直AB,CD=1,DB=3,则AB=?

连接AD,因为AB为直径,所以∠ADB=90度AD⊥CB△ACD∽△ADBAD/BD=CD/ADAD=√3(舍负)AB=√[(√3)²+3²]=2√3

AB为⊙O的直径,C 、D为⊙O上的两点,且OC平分∠ACD,CF⊥DB于F.求证:CA=CD

1.用三角形全等(SAS)OA=OC=OD;因为OC平分角AOD所以,角AOC=角DOC;所以三角形AOC全等三角形DOC;所以AC=DC;

已知AB是圆O的直径,AC为弦,CD切圆于点C交AB延长线于点D,角ACD为120度,BD为10,求证CA=CD;求圆的

所以角BCD=角ACD-角ACB=30度=角CAD,\x0d角CAD=30度,\x0d则直角三角形的角CBA=60度=角BCD+角CDA,\x0d所以角CDA=角CAD=30度,\x0d所以CA=CD

如图,ab是圆o直径,ca切圆o于a,连接cb交圆o于e,f为ac中点

因AB为直径ac为切线所以角bac为直角因af=fc(f为ac中点)ao=bo(两者均为半径)所以fo平行且等于二分之一倍的cb又因为ae垂直于bc所以ae垂直fo于G点所以角aof=角eof(等腰三

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

AB是圆O直径,CA切圆O于A,连接CB交圆O于E,F为AC中点,求证EF是圆的切线

连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90

AB为圆O的直径,CA切圆O于A,CB交圆O于D,若CD=2,BD=6,则tanB的值

连接AD∠CAD=∠B∠CDA=∠CAB=90°△ACD∽△CABAC:BC=CD:ACAC²=CD×BC=2×8AC=4∠B=30°.即tanB=根号3/3

AB为圆O的直径,CA切圆O于A,CB交圆O于D,若CD=2,BD=6,则sinB的值

连接AD∠CAD=∠B∠CDA=∠CAB=90°△ACD∽△CABAC:BC=CD:ACAC²=CD×BC=2×8AC=4sinB=AC/BC=4/8=1/2

如图,圆O中,AB为直径,CD平分角ACB,交圆O于D,求证:CA+CB/CD=根2

证明:延长CB到E,使BE=AC,连接DE∵AB是⊙O的直径∴∠ACB=90°∵CD平分∠ACB∴∠ACD=∠BCD=45°∴AD=BD(等角对等弦)又∵∠DBE=∠DAC(圆内接四边形外角等于内对角

(2010•河东区一模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若CD=22,CA=6,则直径AB的长为(  )

∵AB是⊙O的直径,弦CD⊥AB,垂足为E,CD=22,∴CE=2,在Rt△ACE中,∵CE=2,CA=6,∴AE=AC2−CE2=(6)2−(2)2=2,连接OC,设此圆的半径为x,则OE=2-x,

如图,在圆O中,直径AB=2,CA切圆O与A,BC交圆O于D,若∠C=45°,则BD的长为多少?阴影部分的面积为多少?

∵CA切⊙O于A,∠C=45°,∴△ABC是等腰直角三角形.BC=AB*√2=2√2..连接AD,则AD⊥BC,且AD=BD=BC/2=√2,因为AD弦上的弓形与BD弦上的弓形面积相等,所以阴影面积=

如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA

∵AB是半圆O的直径,∴∠C=90°.∵tan∠CAB=34,∴BCAC=34.设AC=4k,BC=3k,∵AC2+BC2=AB2,AB=10,∴(4k)2+(3k)2=100.∴k1=2,k2=-2

如图,已知:在圆O中,直径AB为10cm弦CA为6cm∠ACB的平分线交圆O于点D求BC,AD,BD

三角形ACB是直角三角形,∠ACB=90度∠ACD=∠BCD=45度AB=10AC=6CD=AB=10BC^2=AB^2-AC^2=100-36=64∴BC=8AD^2=AC^2+CD^2-2AC*A

AB为圆O的直径,CD为弦,且CD垂直与AB,垂足为H 如果圆O的半径为1,CD等于根号3,求O到弦CA的距离.

设:o到CD的距离为d,因为圆的直径AB,垂直于弦CD,由垂径定理知:CH=根3/2,由CH²=AH.BH,即3/4=(1-d)(1+d),即d²=1-3/4=1/4,.解得d=1

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

已知AB、CD为圆O中非直径的两条弦,且AB=CD=8,AB⊥CD于E,圆O的半径为5,那么OE的长等于( )

B分别求弦心距,为3然后用勾股定理,OE是个等腰直角三角型的斜边