已知点p是等边三角形abc两边垂直平分线的交点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:03:19
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
1.∠EBF=∠ABC-∠ABE=90度-60度=30度∠QFC=60度2.∠QFC=60度三角形ABP全等于三角形AEQ,因为AB=AE,AC=AQ,∠BAP=∠BAE+∠EAP=∠PAQ+∠EAP
(1)如图,BM、NC、MN之间的数量关系BM+NC=MN.此时QL=23.(2)猜想:结论仍然成立.证明:如图,延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=120°,∴∠DBC=
再答:只会第一题再问:谢啦
图就不画了.我说一下思路吧.为了方便我们设AB=AC=BC=a角ABC都是60°所以在直角三角形DPC和EBP中角EPB和角DCP都是30°根据在直角三角形里30°所对的直角边等于斜边的一般所以DC=
如图 分别作平行于ab的距离为1和2的平行线,有两个交点,即对应的到bc最远与最近的P点,再利用相似三角形即可求得最远距离 和最近距离因为ad=4 所以ab=
你的辅助线说明你的思路是正确的,继续思考下去找到条件就行了,加油.我提示一下,把三角形ABC旋转到ADB,旋转后两蓝角相等,两黑角相等,PC=BD通过红角和蓝角互补,证P、B、D共线AB=AC&nbs
1)2t-t=20∴t=202)①P在BC上,Q在AC上则0<t≤5∴0.5(10-t)×根号3t=8根号3t1=2t2=8(不合舍去)②P在BC上,Q在AB上5<t≤100.5(10-t)×根号3(
因为,BD=CE,∠ABD=∠BCE,AB=BC,所以,△ABD≌△BCE,可得:∠BAD=∠CBE,∠APE=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°.
(1)若Q点到达C点时BC=t·2cm/s设在t时间内P点的的移动长度为s,则s=t·1cm/s又因为三角形ABC为等边三角形所以:s=t·1cm/sBC=t·2cm/sBC=AB得:s=1/2ABP
画出三角形ABC,作出与AB平行的两条直线,与AB的距离都是1,作出与AC平行的两条直线,与AC的距离都是2,这四条直线相交于四个点,表示满足要求的有四个P点,(1)当P在△ABC内部时,连接PA,P
∵△ABC是等边三角形∴AB=BC=AC,∠A=∠ABC=∠ACB=60°又∵AD=CE∴△ACD≌△CBE(SAS)∴CD=BE
(1)当P为△ABC内一点时连接P与各顶点得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1△PAC=1/2*a*h2△PBC=1/2*a*h3△ABC=
①P在△内h=h1+h2+h3过P做DE‖BC,等边△ADE的高=h1+h2∴h=h1+h2+h3②P在△外,设P在BC边外h=h1+h2-h3过P做DE‖BC,等边△ADE的高=h1+h2∴h=h1
(1)当P为△ABC内一点时连接P与各顶点得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1△PAC=1/2*a*h2△PBC=1/2*a*h3△ABC=
本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB
等边三角形ABC的边长为a连接PA,PB,PC三个三角形的高为x,y,z所求即为x+y+z考虑三个三角形的面积和=ax/2+ay/2+az/2=a(x+y+z)/2=(1/2)*a*a(√3)/2于是
1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-
因为AB=BC,BD=CE,角ABC=角ACB=60°,所以三角形ABD全等于三角形BCE,所以角CBE=角BAD,因为角CBE+角ABE=角ABC=60°所以角BAD+角ABE=60,因为角APE=