已知矩阵A满足A^2-A=3E,求证A 2E可逆,并求其逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:17:42
已知矩阵A满足A^2-A=3E,求证A 2E可逆,并求其逆
已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A

A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A

已知矩阵A满足关系式A^2+2A-3E=0,求(A+4E)^-1.

这种问题就可以拼凑的方法解答,一般都可以写成(xA+yB)*(mA+nB)=CE的形式,你就可以用待定系数法求解了,所以这个式子可以变成:(A+4E)*(A-2E)=-5E,下面的结果你应该能够看出来

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1

因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

已知3阶矩阵A满足条件|E-A|=|2E-A|=|3E-A|求行列式|A|的值.

设A的特征值是x1,x2,x3则E-A的特征值是:1-x1,1-x2,1-x32E-A的特征值是:2-x1,2-x2,2-x33E-A的特征值是:3-x1,3-x2,3-x3根据题意:(1-x1)(1

已知 A满足A平方=A ,E为单位矩阵,证明:A 可逆,并求其逆阵.(2)r(A)+r(A-E)=n .

由A平方=A得A(A–E)=0所以A–E的列向量都是AX=0的解,所以r(A–E)

已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)

因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等

已知方阵A满足A*A-A-2E=0,判断A,E-A是否可逆?如果可逆,求它们的逆矩阵.证明题

A*A-A-2E=0于是A*(A-E)=2EA*(A-E)/2=E(E-A)*(-A)/2=E则A,E-A都可逆,且A的逆矩阵是(A-E)/2,E-A的逆矩阵是-A/2

设4阶矩阵A满足|3E-A|,AAT=2E,|A|

AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

矩阵A满足A^3-2A^2-3A-E=0,证明A E可逆并求其逆矩阵

A^3-A^2-(A^2-A)-(4A-4E)=5E(A-E)(A^2-A-4E)=5E(A-E)可逆,并且(A-E)的逆=(A^2-A-4E)/5A^3+A^2-(3A^2+3A)=E(A+E)(A

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

矩阵A满足A^2+5A-4E=O,证明A-3E可逆,并求其逆.

(A-3E)(A+8E)+20E=A^2+5A-4E=O所以(A-3E)(A+8E)=-20E所以|A-3E||A+8E|=|-20E|≠0所以|A-3E|≠0所以A-3E可逆由于(A-3E)(A+8

已知矩阵A满足A^2-2A-8E=0,则(A+E)^-1=

这种题的方法是他要求哪个矩阵(比如A)的逆矩阵(B)就构造出含那个矩阵的AB=E,这样的式子,B就是逆矩阵A^2-2A-8E=0(A+E)(A-3E)=5E(A+E)(A-3E)/5=E故(A+E)^