已知等差数列an,a1=a,公差d=1,设bn=an2-an2 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:19:14
a2005*a20060,a20050,则a2007+a2006>0因为a2005+a2006=a1+a40100所以使前n项之和sn
如果A、B都是常数,那么从第二个式子可以知道an是常数列,也就得到100an=A,即an=A/100那么Sn=n×an=nA/100
设公差为d,公比为q,则b2=qb1=q(a1+1)=(a1+d+2),↔2q=3+d,b3=q²b1=q²(a1+1)=(a1+2d+3),↔q²
{bn}是等差数列因为,bn=an^2-a(n-1)^2=[an+a(n-1)][an-a(n-1)]=an+a(n-1)所以,b(n+1)-bn=a(n+1)+an-an-a(n-1)=a(n+1)
a=1,是等差数列,否则,不是.再问:过程?再答:an=a+(n-1),bn=a^2+2a(n-1)+(n-1)^2-a(n+1)^2=a^2+2a(n-1)+(1-a)(n-1)^2,若a=1,bn
a(n+1)=an+3n+2所以a(n+1)-an=3n+2同样有an-a(n-1)=3(n-1)+2a(n-1)-a(n-2)=3(n-2)+2...a2-a1=3*1+2把所有的左边,所有的右边相
(I)设数列{an}的公差为d,由已知有a1=3a1+3d=12(2分)解得d=3(4分)∴an=3+(n-1)3=3n(6分)(Ⅱ)由(I)得a2=6,a4=12,则b1=6,b2=12,(8分)设
因为{an}是等差数列,所以a1+an=a2+a(n-1)=a3+a(n-2)=.=a100+a(n-99),因此A+B=100(a1+an),所以Sn=(a1+an)*n/2=(A+B)*n/200
∵a1=13,a2+a5=4,∴2a1+5d=4,即d=23,∵an=33=a1+(n-1)d,∴13+23(n−1)=33,解得n=50,故答案为:50
a1+...a100=0则50*(a50+a51)=0即a50+a51=0由于a10,a500,因此b1,.b48都小于0b49=a49a50a51>0b50=a50a51a520,b51以上都大于0
已知数列{bn}={log2(an-1)}为等差数列,且a1=3a3=9→b1=log2(3-1)=log2(2)=1,b2=log2(9-1)=log2(8)=3,公差d=3-1=2,∴bn=1+(
a(n+1)=(3an-2)/(2an-1)=(3an-3/2-1/2)/(2an-1)=3-1/[2(2an-1)]=→a(n+1)=(3an-2)/(2an-1)→a(n+1)-1=(3an-2)
证明a(n+1)=(2an)/(an+2),n>=11/a(n+1)=(an+2)/2an1/a(n+1)=1/(an)+1/21/a(n+1)-1/an=1/2因为a1=2所以1/an有意义所以{1
an=3n-1由an+1=an+3得知公差d=3所以an=a1+(n-1)d=3n-1
要求数列{1/(an-1)}是等差数列即就是要求1/(an-1)-1/(a(n-1)-1)为一个常数有1/(an-1)-1/(a(n-1)-1)=(a(n-1)-an)/[(an-1)*(a(n-1)
(1)由a1+a2+a3=33得:3a2=33故a2=11又由an-2+an-1+an=153【估计你这里少打了个n】得3an-1=153故an-1=51而a1+a2+...+an=n(a1+an)/
n>=119-n>=1=>1
两边同乘以(an)+1得到:a(n+1)[(an)+1]=an(an)*[a(n+1)]+[a(n+1)]=(an)an*a(n+1)=an-a(n+1)两边同除以an*a(n+1),得到:1=1/a
设等差数列{an}的公差为d,(d>0)则1+2d=(1+d)2-4,即d2=4,解得d=2,或d=-2(舍去)故可得an=1+2(n-1)=2n-1,Sn=n(1+2n−1)2=n2,故答案为:2n