已知等比数列an为递增数列且a5 2 a10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:00:38
已知等比数列an为递增数列且a5 2 a10
已知数列{log2(a^n-1}为等差数列,且a1=3,a2=5.1.求证:数列{an-1}是等比数列.

解:由{log2(a^n-1)}为等差数列则设公差为d则有:d=log2(a2-1)-log2(a1-1)=2-1=1则有:log2(an-1)=log2(a1-1)+(n-1)d=1+(n-1)=n

已知等比数列An为递增数列 且A5的平方=A10 2(An+An+2)=5An+1 求通项公式

a5^2=a10.得出(a1*q^4)^2=a1*q^9得出a1=qAn为递增数列,说明q>12[An+A(n+2)]=5A(n+1)A(n+2)=an·q^2;A(n+1)=an·q代入上式得:2A

已知{an}为递增的等比数列,且{a1,a3,a5}属于{-10,-6,-2,0,1,3,4,16},(1)求数列{an

(1)已知{an}为递增的等比数列可知等比不可能是负数,有以下2种情况若q

已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1−2.

∵a1=2,a1,a3,a7成等比数列∴a32=a1a7设等差数列的公差d,则(2+2d)2=2(2+6d),d>0∴d=1,an=n+1∵Sn=2n+1−2.∴b1=s1=2bn=sn-sn-1=2

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项,求数列{an}的通项公式

a2+a4=2*(a3+2),代入第一个式子,a3=8a2+a4=20a3/q+a3*q=20q=1/2或21/2舍a1=2an=2^n

已知等比数列﹛an﹜中,a5*a3=64,a1=1,且﹛an﹜是递增数列,求a4及通项an

由于a5*a3=(a4)^2=64数列递增所以a4=8又a1=1所以q=2所以an=2^(n-1)

已知等比数列{an}为递增数列,且a

设数列的公比为q,首项为a1,则∵a52=a10,2(an+an+2)=5an+1,∴(a1q4)2=a1q9,2(1+q2)=5q,∵等比数列{an}为递增数列,∴q=2,a1=2∴an=2n故答案

已知正项等比数列{an}是递增数列,且满足a1+a5=246,a2a4=729期(1)求数列an的通项公式

设公比为q,数列是递增数列,q>1数列是等比数列,a1a5=a2a4=729,又a1+a5=246,a1、a5是方程x²-246x+729=0的两根.(x-3)(x-243)=0x=3或x=

已知数列an是等比数列,且首项a1=1/2,a

已知数列a‹n›是等比数列,且首项a₁=1/2,a₄=1/161.求数列a‹n›的通项公式.2.若b‹n›

已知等比数列{an}为递增数列,且a5²=a10,2[an+a(n+2)]=5a(n+1),则数列{an}的通

设等比数列的公比为q由a5²=a10>0得(a1q^4)^2=a1q^9a1=q由2[an+a(n+2)]=5a(n+1)得2[an+q^2an]=5qan所以2q^2-5q+2=0解得q=

已知递增的等比数列{an}满足a2+a3+a4+28,且a3+2是a2,a4的等差中项,求数列{an}的通项公式

题目好像有问题“{an}满足a2+a3+a4+28”?会不会是a2+a3+a4=28如果这样,那解题如下:2(a3+2)=a2+a4a2+a4=28-a3代入解得:a3=8所以,8/q+8q=20解得

已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=___

∵a25=a10,∴(a1q4)2=a1q9,∴a1=q,∴an=qn,∵2(an+an+2)=5an+1,∴2an(1+q2) =5anq,∴2(1+q2)=5q,解得q=2或q=12(等

已知数列{a}是公差不为零的等差数列,若a1=1,且a1a2a3成等比数列an=

a1a2a3成等比数列a2^2=a1a3=a3(a1+d)^2=a1+2da1^2+2a1d+d^2=a1+2d1+2d+d^2=1+2dd^2=0d=0公差不为零的等差数列错题

已知递增的等比数列{an},前三项之积为512,且这三项分别减去1,3,9后又成等差数列,求数列{an}的通项公式.

设等比数列{an}的公比为q,∵等比数列{an}的前三项之积为512,∴a1a2a3=a2q•a2•a2q=(a2)3=512,解之得a2=8又∵这三项分别减去1,3,9后又成等差数列,∴a1-1、a

等比数列{an}为递增数列,且a4=2/3,a3+a5=20/9,数列bn=log3an/2(n∈N*),

设公比为q,那么a3=2/3q,a5=2q/3,于是2/3q+2q/3=20/9整理,得:(q-3)(3q-1)=0,而an递增,所以q>1,所以q=3那么an=2/3*3^(n-4)=2×3^(n-

已知等比数列an为递增数列a2xa5=32,a3+a4=12 数列bn满足bn=log以2为底a

易得an为首项为1,公比为2的等比数列.an=2^(n-1)bn=log2(2^n-1)=n-1Sn=San+Sbn=(2^n-1)+(n(n-1)/2)一般来讲1,2,4,8……这个数列很常考,看见