已知等边三角形abc中,e是ab边上一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:09:01
∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
是等边三角形,证明:AD=BE=CF,AB=BC=CA,→DB=EC=FA,又∵∠A=∠B=∠C=60°,∴△FAD≌△DBE≌△ECF,∴FD=DE=EF,∴△DEF是等边三角形,证毕!
因为BD=CE,△ABC为正△所以AB=AC,∠A=60°所以AD=AE,∠A=60°所以△ADE正三角形
证明:∵△ABC等边∴AC=BC,∠BAC=∠B=∠ACB=60°∵△CDE等边∴CD=CE,∠DCE=60°∴∠ACB=∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CAD=∠B=6
证明:由三角形正弦定理得a/sinA=b/sinB=c/sinC所以a/b=sinA/sinB=cosA/cosB得sinAcosB-cosAsinB=0所以sin(A-B)=0所以A-B=π*n(n
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
再问:请问这样做可以不再问: 再答:差不多啊!可以啊!记得赏喔!谢!再问:嗯呐
答:∵△ABC是等边三角形∴∠A=∠B=∠C∵AD=BE=CF,即AF=CE=BD∴△ADF≌△BED≌△CFE(边角边)∴在△DEF中DE=EF=FD所以△DEF为等边三角形(边边边)
因为,BD=CE,∠ABD=∠BCE,AB=BC,所以,△ABD≌△BCE,可得:∠BAD=∠CBE,∠APE=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°.
是求ef+gh+mn的值看图中证明
这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌
证明:∵*ABC是等边三角形∴AC=AB,<CAB=<ACB=60度∵AC垂直于CD,BA垂直于AE∴<DCA=<EAB=90度∴<DAC=<ABE=30度在*DAC和*EBA中<DCA=<EAB(已
(sinB)^2=(1-cos2B)/2.sinAsinC=-(1/2)(cos(A+C)-cos(A-C))所以:根据2B=A+C,得到:cos2B=cos(A+C).所以消去这个项,得到:1/2=
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
∠CBA=∠CED+∠CDE=2∠CED所以∠CED=30度,所以EF=2分之根号3,所以DE为根号3CF^2=CE^2-(DE/2)^2CF=05再问:格式不对哟,改对了就采纳分就是你的再答:∵∠C
因为等边三角形ABC、BDFBE=BD,BA=BC,∠FBD=∠ABC=60所以∠FBA=∠DBC所以△FBA≌△DBC因为D、E分别是AC、BC的中点所以BD⊥AC,AE⊥BC,BD平分∠ABC所以
物理吹笛子时用手指堵住不同的笛孔,则笛子腔体长度发生变化,不同长度的腔体,有不同的共振频率,产生不同频率的驻波,因此发出不同频率的声波,音调由频率的频率决定,因此就能吹出不同的音调语文1、桃花潭水深千
先吐槽...不可能是等边三角形吧--sinA=√2/10cosA=7√2/10tanA=1/7tan(A-B)=(tanA-tanB)/(1+tanAtanB)=-2/11(1/7-tanB)/[1+