已知随机变量X服从参数为2的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:47:18
x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)
事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).
1-(1-p)^3=19/27(1-p)^3=8/27(1-p)=2/3p=1/3P{X>=1}=1-(1-p)^2=5/9
E[(X-1)(X-2)]=E[X^2-3X+2]=EX^2-3EX+2EX=λDX=λEX^2=DX+(EX)^2=λ+λ^2即λ^2-2λ+2=1得λ=1
因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
参数为1,就是λ为1
E(2X-3)=2EX-3.X服从泊松分布,则EX=3.所以EZ=3.
对于方差,我们有以下的性质:D(aX+b)=a^2D(X)所以:D(Y)=D(-3X+12)=(-3)^2D(X)=9D(X)因为离散型随机变量X服从参数为2的泊松分布而参数为λ的泊松分布的方差为λ所
你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.
E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.
因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)