幂级数苛细an=(z-2)在z=0处条件收敛,则该级数的收敛函数半径为u=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:14:08
z=i时级为∞Σn=1cn(2i)^n收敛半径R=2所以根据阿贝尔定理在Z
设z=a+bi|z|^2-3|z|+2=0(|z|-1)(|z|-2)=0|z|=1或2|z|=√(a^2+b^2)所以a^2+b^2=1或a^2+b^2=4轨迹为两个圆所以选B
|z-(0-i)|=|z-(-2+0i)|所以z到A(0,-1)和B(-2,0)距离相等所以是线段AB的垂直平分线
可设z=x+yi,x,y∈R+.|z|²=x²+y²=2,z²=x²-y²+2xyixy=1.∴x=y=1.∴z=1+i
则由题意得,(z+1)/z=2(cosπ/3+sinπ/3*i),设z=a+bi(a+bi+1)/a+bi=2(cosπ/3+sinπ/3*i)a+1+bi=(a-sqrt(3))+(sqrt(3)a
虚数z满足|z|=1,z²+2z+1/z
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
设z=a+bi则(3+2i)(a+bi)=3(a+bi)+3+2i即(3a-2b)+(2a+3b)i=(3a+3)+(3b+2)i所以3a-2b=3a+3,2a+3b=3b+2故a=1,b=-3/2所
设z=a+bi,a,b是实数|z-2|^2=(a-2)^2+b^2=41/z=1/(a+bi)=(a-bi)/(a^2-b^2)z+1/z=[a+a/(a^2-b^2)]+[b-b/(a^2-b^2)
设z=a+bi(a,b∈R),|z|=a2+b2,代入方程得a+bi+a2+b2=2+8i,∴a+a2+b2=2b=8,解得a=−15b=8,∴z=-15+8i..z=-15-8i.
因为|a|为非负实数,因此z^2必定为非正实数,因此z的幅角一定为+/-pi/2,也就是z一定落在虚轴上这样,|z|=|z|^2所以|z|=1或0也就是z=i或z=-i或z=0
好多符号没法编辑,我用Word编辑,截图给你看吧?大致过程如下:http://hi.baidu.com/%D2%DD%B7%E7%CE%C4%C5%B5/album/回答问题的截图第三题太变态了,z的
因为模[(z+1)/z]=2arg[(z+1)/z]=π/3所以(z+1)/z=2(cosπ/3+isinπ/3)1+1/z=1+√3i1/z=√3iz=1/[√3i]=-√3/3i
点击放大:
首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点
设z=x+yi(x,y∈R),由|z|2+(z+.z)i=3−i2+i,得x2+y2+2xi=(3−i)(2−1)(2+i)(2−i)=1−i,∴x2+y2=12x=−1,解得x=−12y=±32.∴
http://hiphotos.baidu.com/zjhz8899/pic/item/fd73d4001e22e7277bec2c87.jpeg
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2
z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint