a2-2a-3=[a 1][a-3]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:28:18
a2-2a-3=[a 1][a-3]
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,

=a1+a2+a3+a4得到特解为(1,1,1,1)0=a1-2a2+a3得到齐次解(1,-2,1,0)(只有这一个,因为A得秩是3,齐次解只能有4-3=1个)所以通解为(1,1,1,1)+α(1,-

已知四阶方阵且A=(a1,a2,a3,a4),其中a1,a2,a3,a4线性无关,且a1=2a2-a3,B=a1+a2+

a1=2a2-a3怎么会a1,a2,a3,a4线性无关?再问:额,错了,没a4再答:a1,a2,a3线性无关也不对呀a1=2a2-a3再问:看来我晕了头了,是a2a3a4无关,呵呵再答:a2,a3,a

A为2阶矩阵,a1,a2为2维向量A*a1=O,A*a2=O则(A*a1,A*a2)=O

A(a1,a2)这是分块矩阵的乘法A看作一个只有1块的分块矩阵

设向量组a1,a2,a3线性无关,证明:向量组B1=a1+2a2+a3,B2=a1+a2+a3,B3=a1+3a2+4a

考虑M=121111134是个可逆矩阵A=(a1,a2,a3)B=(b1,b2,b3)MA=B既然A,M满秩,B一定满秩,因此所述三个向量线性无关或者从定义,如果存在c1,c2,c3使得c1b1+c2

已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1

(B)=3,则a2,a3,a4线性无关则a2,a3无关r(A)=2则a1,a2,a3线性相关所以a1可以有a2,a3线性表示或者根据a1,a2,a3线性相关则存在不全为0的常数k1,k2,k3使得k1

设矩阵A=(a1,a2,a3)行列式A= -2求行列式a3-2a1,3a2,a1

|a3-2a1,3a2,a1|第1列加上第3列*2=|a3,3a2,a1|交换第1列和第3列=|a1,3a2,a3|将第2列中的3提取出来=3*|a1,a2,a3|=3*|A|=3*(-2)=-6所以

设a1,a2,a3线性无关,b1=a1+2*a2,b2=2*a2+a*a3,b3=3*a3+2*a1,且线性相关,求a

(b1,b2,b3)=(a1,a2,a3)A.其中A=1022200a3因为a1,a2,a3线性无关,b1,b2,b3线性相关,故|A|=0.得6+4a=0,所以a=-3/2#注:由b1,b2,b3线

设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+

设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3

设a1,a2,a3为3维列向量,矩阵A=(a1,a2,a3),B=(a2,2a1+a2,a3).若行列式[A]=3,则行

对B进行初等列变换,C2-C1,然后对换C1跟C2两列(此时要多加个负号),即:-(2a1,a2,a3),所以|B|=-2|A|=-6,我也是刚学这个的,不知有没错.

设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a

推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2

设A=(a1,a2,a3,a4,a5),a1,a3,a5线性无关,a2=3a1-a3-a5,a4=2a1+a3+6a5,

因为a1,a3,a5线性无关,a2=3a1-a3-a5,a4=2a1+a3+6a5所以a1,a3,a5是a1,a2,a3,a4,a5的一个极大无关组所以r(A)=r(a1,a2,a3,a4,a5)=3

a1a2a3a4三维列向量A=(a1,a2,2a3-a4+a2),B=(a3,a2,a1),C=(a1+2a2,2a2+

C=(a1+2a2,2a2+3a4,a4+3a1)=(a1,a2,a4)KK=103220031所以40=|C|=|a1,a2,a4||K|=20|a1,a2,a4|所以|a1,a2,a4|=2.|A

设三阶方阵A=(A1,A2,A3),且|A|=3,则|A1-A2,A3,2A1|=______

|A1-A2,A3,2A1|=2|-A2+A1,A3,A1|[第3列提出公因子2]=2|-A2,A3,A1|[第3列乘-1加到第2列]=-2|A2,A3,A1|[第1列提出-1]=2|A2,A1,A3

设3×2矩阵A=(a1,a2),B=(b1,b2),其中a1,a2,b1,b2是3维列向量,若a1,a2

(C)正确.b1,b2线性无关r(B)=2r(A)=r(B)A,B等价(D)充分但不必要

证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B

已知a1,a2为二维列向量,矩阵A=(a1,a2),B=(a1+a1,a2-a2),|A|=2,则|B|=?

1.|a1+a1,a2-a2|=|2a1,0|=02.A*A+5A-4E=0(A-3E)^2+11A-13E=0(A-3E)^2+11(A-3E)+20E=0(A-3E)[(A-3E)+11E]=-2