A2-2A-8E=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:31:40
解;∵3a2-a-2=0,∴3a2-a=2,∴5+2a-6a2=5-2(3a2-a)=5-2×2=1.故答案为:1.
解:因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.
这个公式应该是可以在同一列向下复制的,然后就会变成=IF(COUNTIF($A$1:A3,A3)>0,COUNTIF($A$1:A3,A3))=IF(COUNTIF($A$1:A4,A4)>0,COU
做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3
A2+A-7E=0,(A+3E)(A-2E)=E所以由书上推论,得A+3E可逆,且A+3E的逆矩阵(A+3E)^(-1)=A-2E.
证明:∵方阵A满足A2-A-2E=0,∴A2-A=2E,∴A×A−E2=E所以A可逆,逆矩阵为A−E2,∵方阵A满足A2-A-2E=0,∴A2=A+2E,由A可逆知A2可逆,所以A+2E可逆,逆矩阵为
证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢
∵a2-3a+1=0,∴a2-3a=-1,a+1a=3,1+a2=3a,∴4a2-9a-2+91+a2,=4(a2-3a)+93a+3a-2,=4×(-1)+3(1a+a)-2,=-4+3×3-2,=
a3+2a2+2a+1=a^3+a^2+a+a^2+a+1=a(a^2+a+1)+(a^2+a+1)=(a^2+a+1)(a+1)=0
推导:(a^2-b^2)^2-8(a^2+b^2)=(a^2-b^2)^2-8(a^2-b^2)-16b^2=(a^2-b^2)(a^2-b^2-8)-16b^2=(a+b)(a-b)[(a+b)(a
∵a2+a=0,∴2a2+2a+2013=2(a2+a)+2013=2×0+2013=2013.故答案为:2013.
1/(a+1)-(a+3)/(a^2-1)*(a^2-2a+1)/a^2+4a+3)=1/(a+1)-(a+3)/[(a-1)(a+1)]*(a-1)^2/[(a+1)(a+3)]=1/(a+1)-(
∵a2+a=0,∴2a2+2a=0,把2a2+2a=0代入则2a2+2a+2007=2007.
要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2
A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
A*(A-2E)/(-3)=E,故A的逆为-1/3*(A-2E)
AB=2B≠0那么|A|≠0|B|≠0(A-2E)B=0所以|A-2E||B|=0得出|A-2E|=0还有|A-E|=0A的特征值有1和2|A|=-2=1*2*(-1)所以还有一个特征值-1所以A的特
若存在B使B(A+E)=E,就可以了A2-2A-8E=0--->A2-2A-3E=5E---->(A+E)(A-3E)=5E---->(A+E)(A/5-3/5E)=E所以(A/5-3/5E)此类问题