ab cd是圆o的直径,且ab垂直cd.e是oc中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:36:37
连接:BE,则四边形ABED是圆内接四边形,所以:∠ADE+∠ABE=180°即∠ADE=180°-∠ABE所以:sin∠ADE=sin(180°-∠ABE)=-sin∠ABE而:∠AEB=90°,A
AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠
http://zhidao.baidu.com/question/484438949.html看样子你是不想要答案而是要题不过这里面题图也有答案也有如果跟你卷子上给出的数值不一样自己代一下就可以了
想问什么呢?再问:1,试判断CD与圆O的关系,并说明理由2.若圆O的半径为3CM,AE=5CM,求角ADE的正玄值
连结OD因为∠AED=45°所以∠DOA=90°又因为ABCD为平行四边形所以∠CDO=90°即CD是圆O的切线
1,CD与圆O相切与点D由角AED=45°,则推出∠AOD=90°,从而推出上述答案.2,由三角形AOD为直角等腰三角形,推出AD的值,再由正弦定理可得sin∠ADE的值,算一下就出来了.
(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分
证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc
再答:请采纳哦~O(∩_∩)O再问:图不是很清楚再答:连接BO并延长交AD于H.∵△ABD是⊙O的内接三角形,∴OB平分∠ABD,∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥C
∵四边形ABCD内接于圆o∴∠BAD+∠BCD=180°∵AD∥BC∴∠BCD+∠ADC=180°∴∠BAD=∠ADC∴梯形ABCD是等腰梯形,AB=CD∵AB=BC∴AB=BC=CD∴∠AOB=∠B
(1)证明:连接DO,∵AO=DO,∴∠DAO=∠ADO=22.5°.∴∠DOC=45°.又∵∠ACD=2∠DAB,∴∠ACD=∠DOC=45°.∴∠ODC=90°.∴CD是⊙O的切线.连接DB,∵直
证明:(1)连接DO∵AO=DO∴∠DAO=∠ADO=22.5°∴∠DOC=45°又∵∠ACD=2∠DAB∴∠ACD=∠DOC=45°∴∠ODC=90°∴CD是⊙O的切线
1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的
(1)设正方形ABCD的边长=2a;连接OD,OG,DE与圆O相切于点G,∠OGD=90°=∠OAD;AO=GO,OD=OD,故DG²=OD²-OG²=OD²-