AB=2,AC=根号2BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:43:04
此题用余弦定理即:cosB=(AB^2BC^2-AC^2)/2AB×BC(人教高中数学,忘了是必修4还是必修5)算得cosB=(4根号3)/3根号2根号6.面积用两边极其夹角的正弦值之积的一半:S=1
∵AB=根号2,AC=根号2,BC=2∴AB²+AC²=2+2=4=BC²∴三角形ABC是等腰直角三角形∴∠B=45°
过A向CD作垂线,垂足为E;过B向DC延长线作垂线,垂足为F;则四边形ABFE为矩形.设BF=AD=x,根据勾股定理,则CF=√(BC^2-BF^2)=√(2-x^2);同理CE=√(3-x^2)AB
(AB/|AB|+AC/|AC|)*BC=0(AB*BC)/|AB|+(AC*BC)/|AC|=0|BC|cosB-|BC|cosC=0cosB=cosCB=C(AB/|AB|*AC/|AC|)=根号
(AB/|AB|+AC/|AC|)BC=0,说明角A的角平分线与BC边垂直,可判断三角形为等腰三角形,又AC/|AC|*BC/|BC|=根号2/2,角C的余弦值为二分之根号2,角C为45度,故三角形为
根据勾股定理得:BC=根号(AB^2-AC^2)=根号(6^2-4^2)=根号(36-16)=根号20=根号(4*5)=根号4*根号5=2倍根号5(够详细了吧?)
过点A作AD垂直BC因为AD垂直BC所以AD平方+BD平方=AB平方AD平方+CD平方=AC平方BC=6,设BD为X,则CD为6-X且AB=2倍根号5,AC=4倍根号5所以AD平方+X平方=20(1)
余弦定理得cosA=(3方+2方-根号10的平方)/(2*3*2)=0.25向量AB*向量AC=向量AB的模*向量AC的模*cosA=3*2*0.25=1.5
做AD垂直BC于D根据勾股定理得到AD=根号10S三角形ABC=2根号2*根号下10*1/2=根号20=2*根号5
所以高的平方=20-6=14面积为=1/2*2根号6*根号14=2根号21
向量AB×向量AC=AB×AC×COS=2×3×(3^2+2^2-(√10)^2)/2×2×3=3/2
三角形ABC中,H是A到BC的高,则外接圆半径为r,存在以下公式:2r=AB*AC/HH=AB*AC/(2r)=根号3*根号2/2=根号6/2所以BC=根号(AC^2-H^2)+根号(AB^2-H^2
由正弦定理:AB/sinC=2(√6+√2)=AC/sinB=BC/sinAAC=2(√6+√2)sinBBC=2(√6+√2)sinAAC+BC=2(√6+√2)(sinA+sinB)=2(√6+√
(1)cosA=(AB^2+AC^2-BC^)/2AB*AC=√2/2向量AB*向量AC=|AB||AC|cosA=√3+1
AB=2,AC=(√2)BC,求三角形ABC面积的最大值?c=AB=2,b=AC,a=BC,b=(√2)a;cosC=(a²+b²-4)/2ab=(3a²-4)/[(2√
弦AB所对圆心角A1=2*ARCSIN((2^0.5/2)/1)=2*ARCSIN(2^0.5/2)=90度弦AC所对圆心角A2=2*ARCSIN((3^0.5/2)/1)=2*ARCSIN(3^0.
AC=根号6面积=2X根2X二分之一=根号2
已知,在三角形ABC中,AC=2√6,BC=2√2,AB=4√2∵AC^2+BC^2=(2√60)^2+(2√2)^2=32AB^2=(4√2)^2=32∴AC^2+BC^2=AB^2三角形ABC是以
由已知可以知道AC^2+BC^2=24+8=32=AB^2,所以△ABC是以AB为斜边的直角三角形,设CD=x,由面积公式得,(2根号6)*(2根号2)/2=(4根号2)*x/2,解得x=根号6