AB=AC AD=BC 交ac于点d 求∠cae的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:12:14
DE+DF=AB.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DF=AE,∵AB=AC,∴∠B=∠C,又DE∥AC,∴∠C=∠BDE,∴∠BDE=∠B,∴DE=BE,∵AE+BE=
(1)证明:连接OD,∵AC=BC,∴∠ABC=∠BAC,∵OD=OB,∴∠ABC=∠ODB,∴∠BAC=∠BDO,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD为半径,∴直线EF是⊙O的切线;(2
是连结CE,则AE=CE,∴BC=CE,∵∠B=∠B,∴等腰△ABC与等腰△CBE相似∴AB/CE=BC/BE,由AE=CE=BC,∴AE/AB=BE/AE∴E为黄金分割点
因为DE//AC,EF//BC所以四边形EDCF是平行四边形所以CF=DE因为DE//AC所以角EDA=角DAC因为AD平分角BAC所以角EAD=角DAC因为角EDA=角DAC所以角EAD=角EDA所
角EDF的大小不变.因为DE//AC、DF//AB,所以四边形AEDF是平行四边形,所以角EDF=角A.所以不论点D如何运动,四边形AEDF都是平行四边形、角EDF都=角A.所以角EDF的大小不变.(
首先,作辅助线,连接MA和NA.由AB=AC和由点E,F分别是AB,AC垂直平分线得知AE=EB=AF=FC,且三角形BEM和三角形NFC为直角三角形.所以得知三角形BEM=三角形NFC.所以BM=N
向量BF=向量BA+向量AF=-向量AB+(1/5)向量AC=-向量a+(1/5)向量
1)直线EF与圆O相切.证明:连接OD∵AB=AC,OB=OD∴∠B=∠C=∠OBD∴OD//AC∵EF⊥AC∴EF⊥OD因此,EF与圆O相切连接ADBD=CD=5AD=√(AB²-BD
由于初二上还没接触平行四边形因此可以用夹在平行直线中的平行线段相等(小学曾经接触过的)图1有BF=DE(等腰),AE=DF(用夹在平行直线中的平行线段相等),PD=0所以PD+PE+PF=AB图2,过
证明:连接AD.∵AB是直径∴∠ADB=90°∴AD⊥BC∴∠BAD=∠CAD∴BD=DE.
证明:(1)连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD
提示;①由己知条件可DB=3,CD=4,②证⊿CDF∽⊿CBD,可得,CF=3·2·,DF=2·4③证EF是⊙O的切线,由切割线定理FD²=FG×FC,求出FG,CG=CF-FG,④BC是⊙
证明:连接AF,过A作AH⊥BC,交BC与H∵三角形ABC中,AB=AC,角BAC=120°∴∠C=30°,∠CAH=60°又∵EF是AC的垂直平分线∴AF=CF=2EF,∠EAF=∠C=30°∴∠F
(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE
解:连接BE,AD.AB为直径,则∠BEA=∠ADB=90°,BE垂直AC.又AB=AC,则BD=CD.∵DG垂直AC.∴DG∥BE,⊿CGD∽⊿CEB,CG/CE=CD/CB=1/2,则CG=(1/
如图.①辅助线:连接CD.∵AC=直径BC.∴等腰△ACB.又∵BC是⊙O直径.∴CD⊥AB.∴CD是△ACB的中线(很据等腰三角形三线合一定理).∴BD=AD.②辅助线:连接OD.∵OD,OB是⊙O
/>∵DE垂直平分AC∴EA=EC∵AE=BC∴BB=CE∵AB=AC,∠B=∠B∴△CBE∽△ABC∴CB²=BE*CA∴AE²=BE*AB∴点E是线段AB的黄金分割点
连接CD、BG,OG=OC=OB,角CGB=90度,GB平行FE,EC:EB=FC:FG,CD垂直平分AB,D是AB中点,F是AG中点,AF=FG,EC:EB=FC:AF,EC*AF=EB*FC.
证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.