AB=C,r(B)=n,则A,C列向量组等价
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:24:50
本题被称为薛尔福斯特公式,是Frobenius不等式的特殊情形,就是那里令B=E,我之前回答过http://zhidao.baidu.com/question/338678441.html?oldq=
B的每个列向量都是齐次方程AX=0的解.当B为零矩阵时,AX=0只有零解,所以r(A)=n,B为零矩阵所以r(B)=0此时r(A)+r(B)=n当B为非零矩阵时,AX=0有非零解,所以r(A)
AB=0则r(A)+r(B)=1故r(A)
考虑两个线性空间:(1)B的列空间,即B的各列向量张成的线性空间.它的维数即是B的列秩,等于B的秩,即r(B).(2)Ax=0的解空间,即Ax=0的所有解组成的线性空间.由基本定理,它的维数=n-r(
都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n
如果r(A)=n结合r(A)=n此外,又知道r(B)
证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=
就是证明的记号有点乱,方法是对的,重新整理如下:设A是m×n矩阵,B是n×k矩阵,求证r(AB)≥r(A)+r(B)-n.设r(A)=s,D为A的相抵标准形.可知存在m阶可逆阵P与n阶可逆阵Q使PAQ
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
因为AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解又因为B≠C所以B-C≠0所以Ax=0有非零解所以r(A)
A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)
设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(
AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0
设B=(b1,b2,b3,.bl),则A(b1,b2,b3,.bl)=(0,0,0.),(假设A为m行n列,B为n行l列)即Abi=0,(i=1,2,3...l),即矩阵B的l个列向量都是齐次方程Ax
才5分啊!太少了.楼主再加点分呗,
A是m×n矩阵,若齐次线性方程组AX=0的解向量η1,η2,…,ηt是线性无关的,而且AX=0的每一个解向量都可由它们线性表出,则称η1,η2,…,ηt为AX=0的基础解系.如果矩阵A的秩r(A)=r
作2n级矩阵:EnO初等EnO最En-BOAB变换AAB后AO2n级矩阵的秩为n.设R(A)=sR(B)=t则A中有s个线性无关的行向量,B中有t个线性无关的行向量.这个2n级矩阵的前n行至少有t个线
若η是齐次线性方程组Bx=0的解则Bη=0所以Cη=ABη=A0=0所以η也是齐次线性方程组Cx=0的解.反之,若η是Cx=0的解则有(AB)η=0所以A(Bη)=0由于r(A)=n,所以Ax=0只有
证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基
若R(B)=n,则显然有t>=n说明B的行秩为nB能通过初等列变换,变为[E,0]形式其中E是n阶单位方阵就是说存在可逆的Q,合B=[E,O]QAB=A[E,O]Q=[A,0]Q即R(AB)=R([A