ABCD,EFGH是正方形,AD=4,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:46:09
∵ABCD是矩形∴∠ABC=∠BCD=∠CDA=∠DAB=90°AB=CD,BC=AD∴ABCD是矩形的外角也是90°∴矩形ABCD的外角平分线,把外角平分成两个45°角∴△ABE、△BCF、△CBG
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
由题意可得:AE=AH=CG=CF=13AD=13×15=5(厘米),DH=DG=BF=BE=23AD=23×15=10(厘米),所以长方形EFGH的面积是:15×15-10×10-5×5,=225-
∵AE,BE,DF,CF是4个直角的角分线∴角1=角2=角3=角4=角ADM=45°∴角AEB=角NEM=90°同理可以证得角NFM=90°∵角2=角ADM=45°∴角M=90°同理也可以证得角N=4
∵正方形ABCD的边长是15厘米,长方形EFGH的四个顶点三等分正方形的每条边∴EB=BF=10厘米,AE=AH=5厘米∴EF=√(EB^2+BF^2)=√(10^2+10^2)=10√2(厘米)HE
设ABCD边长1,则圆直径也为1,那么EFGH对角线为1,根据等边直角三角行三边长比1:1:根号2,则EFGH边长为2/根号2,ABCD面积为1,EFGH面积为1/2,作比,则EFGH面积是ABCD面
证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB
如图:设大正方形边长为1,那么圆的直径也为1,则:(1×1):[1×(1÷2)÷2×2],=1:0.5,=2:1;故答案为:2:1.设大正方形边长为1,那么圆的直径也为1,根据“正方形的面积=边长×边
若E、F在A两旁则:三角形AEF面积=ab=(1-2/3)/4=1/12;EFGH面积=2/3=efXef=aXa+bXb=(b-a)X(b-a)+2ba则有(b-a)X(b-a)=2/3-2X1/1
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
在△AEF和△DHE中,EH=EF∠EAF=∠DAE∠DEH=∠AFE,∴△AEF≌△DHE,∴AF=DE,∵DE+AE=1,∴a+b=1,∵a2+b2=23求解得:a=1+332,b=1−332,∴
连接A‘C'或者B'D',证明其中一个角为直角即可.
7×7÷2=49÷2=24.5(平方厘米)答:正方形EFGH的面积是24.5平方厘米.
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
此题属于一类经典的平面几何题,用常规证法不太容易,但用反证法(或同一法)却有奇效!只需证EFGH为矩形,以下利用全等显然.用反证法,反设EFGH不是矩形,它的四个内角中至少有一个钝角,不妨设∠G为钝角
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
可以设呗设正方形ABCD的边长为a则它的对角线就是根号2a所以它的面积就是a^2根据题意所以正方形EFGH的边就是2根号2a所以它的面积就是8a^2所以面积比就是8:1
在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup
设正方形ABCD边长是3,则它的面积是9EFGH是正方形,则它与正方形ABCD相交为四个全等的直角三角形,每个三角形的面积是1,即1/2*1*2于是EFGH分别在距离点ABCD1或者2上
假设ABCD的边长是2,其面积就是4;那么BG=BF=1,FG=根下2EFGH的面积就是2所以关系就是EFGH的面积是ABCD面积的一半