ABCD为正方形,O为正方形中心,PO垂直于地面ABCD,底面边长为a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:29:00
这个简单啊链接B1O,D1O,AO,BD则AO⊥面BB1D1D又面B1D1O在面BB1D1D上所以AO⊥面B1D1O所以Vo-AB1D1=(1/3)×AO×[(B1D1×BB1)/2]=a/6再问:不
在正方形ABCD中∠ABE=∠ABO+∠2=90°∵AE⊥BF∴∠AOB=90°∴∠1+∠ABO=90°∴∠1=∠2(同角的余角相等)
4(1)AD是AS在底面的射影,因为AB⊥AD,所以AB⊥SA(2)平面几何知识可知BD⊥BC,SD⊥底面==>SD⊥BC,所以BC⊥面BSD所以SB⊥BC5.(1)显然,向量:OA+AP=OP;OB
连AO、OF、BD,设棱长为2∵A'A⊥面ABCD,BD∈面ABCD∴A'A⊥BD∵O为正方形ABCD中心∴BD⊥AO∴BD⊥面A'AO∴BD⊥A'O又A'O=√6,OF=√3,AF=3∴A'O
过H向CD和BC作垂线分别垂直于M、N,设HG与CD交与点P,HE与BC交与点Q然后证△HNQ≌△HMP(AAS)所以四边形HQCP的面积等于正方形HNCM的面积恒等于1/4正方形ABCD的面积
证明:正方形ABCD的中心O是对角线AC、BD的交点,所以D1O是平面ACD1与平面BB1D1D的交线,因为B1D在平面BB1D1D中、B1D与平面ACD1相交,所以交点H在交线D1O上,即D1、H、
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
1,根号32,是2啦,你看dn=ad=be啊,三等分,所以是2啦答案补充1,内接圆的半径是1对不对,然后圆心到正三角形的顶点刚好是半径也是1,那么三角形两个顶点和圆心构成一个等腰三角形,你过圆心向对边
(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC
作OP⊥DC于P,则OP=1,PC=1,另外OF=2√2,所以PF=√(OF^2-OP^2)=√7所以CF=PF-PC=√7-1
(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C
(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+
设CE的长为x过E点向AC作垂线,设垂足为F则ABE与AFE全等.那么FE=BE=BC-CE=1,AF=AB=1于是CF=(根号2)-1根据CEF是直角三角形.CF的平方+EF的平方=CE的平方列方程
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
在O点分别做BC,CD的垂线交点分别为X,Y,三角形OXM全等于全等与OYN;阴影部分面积等同于OXCY,等于(1/4)a&
1、在RT△ODM中,DM²+OD²=OM².∵OM=OA,OD=8-OA.∴X²+(8-OA)²=OA²X²+64-16OA+O
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC